dyn_test_runner.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import os
import sys
import numpy as np
import argparse
import onnx
from onnx import numpy_helper
import migraphx


def parse_args():
    parser = argparse.ArgumentParser(
        description="MIGraphX dynamic test runner")
    parser.add_argument('test_dir',
                        type=str,
                        metavar='test_loc',
                        help='folder where the test is stored')
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='Specify where the tests execute (ref, gpu)')
    parser.add_argument(
        '--default_dyn_dim_value',
        type=str,
        help=
        'default dynamic_dimension to use if model has dynamic shapes, ex: "{1, 4, 2}"'
    )
    parser.add_argument(
        '--map_dyn_input_dims',
        type=str,
        help=
        'json dict of map_dyn_input_dims to pass to onnx_options while parsing'
    )
    args = parser.parse_args()

    return args


def parse_dyn_dim_str(dim_str):
    # expecting string like: "{1, 4, 2}" or "{2, 4}"
    if dim_str is None:
        return migraphx.shape.dynamic_dimension(1, 1, 0)
charlie's avatar
charlie committed
65
    dim_str = dim_str.strip('{}()')
66
67
68
69
70
71
72
    dims = [int(x) for x in dim_str.split(', ')]
    if len(dims) == 3:
        return migraphx.shape.dynamic_dimension(dims[0], dims[1], dims[2])
    return migraphx.shape.dynamic_dimension(dims[0], dims[1])


def parse_dyn_dims_str(dds_str):
charlie's avatar
charlie committed
73
74
75
76
77
78
79
80
81
    # expecting string like "[{1, 4, 2}, {4, 4}, {4, 4}]"
    dyn_dims = []
    start_ind = 0
    dds_str = dds_str.strip('[]')
    for i, v in enumerate(dds_str):
        if v == '{':
            start_ind = i
        elif v == '}':
            dyn_dims.append(dds_str[start_ind:i + 1])
82
83
84
85
86
    return [parse_dyn_dim_str(dd) for dd in dyn_dims]


def parse_map_dyn_input_str(dict_str):
    # return {input_name: list<dynamic_dimension>}
charlie's avatar
charlie committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    # expecting string like: `{"A": [{1, 4, 2}, {4, 4}, {4, 4}], "B": [{2, 4}, {2, 4}]}`
    start_ind = 0
    in_quotes = False
    keys = []
    dyn_dim_strs = []
    for i, v in enumerate(dict_str):
        if v == '"':
            if not in_quotes:
                start_ind = i
                in_quotes = True
            else:
                keys.append(dict_str[start_ind:i + 1])
                in_quotes = False
        elif v == '[' and not in_quotes:
            start_ind = i
        elif v == ']' and not in_quotes:
            dyn_dim_strs.append(dict_str[start_ind:i + 1])
104
    dd_dict = {}
charlie's avatar
charlie committed
105
106
107
    for key, dds in zip(keys, dyn_dim_strs):
        x = parse_dyn_dims_str(dds)
        dd_dict[key.strip('"')] = x
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    return dd_dict


def get_sub_folders(dir_name):
    dir_contents = os.listdir(dir_name)
    folders = []
    for item in dir_contents:
        tmp_item = dir_name + '/' + item
        if os.path.isdir(tmp_item):
            folders.append(item)
    folders.sort()

    return folders


def get_test_cases(dir_name):
    return get_sub_folders(dir_name)


def get_model_name(dir_name):
    dir_contents = os.listdir(dir_name)
    for item in dir_contents:
        file_name = dir_name + '/' + item
        if os.path.isfile(file_name) and file_name.endswith('.onnx'):
            return item

    return ''


def read_pb_file(filename):
    with open(filename, 'rb') as pfile:
        data_str = pfile.read()
        tensor = onnx.TensorProto()
        tensor.ParseFromString(data_str)
        np_array = numpy_helper.to_array(tensor)

    return tensor.name, np_array


def wrapup_inputs(io_folder, param_names):
    param_map = {}
    data_array = []
    name_array = []
    for i in range(len(param_names)):
        file_name = io_folder + '/input_' + str(i) + '.pb'
        name, data = read_pb_file(file_name)
        param_map[name] = data
        data_array.append(data)
        if name:
            name_array.append(name)

    if len(name_array) < len(data_array):
        param_map = {}
        for i in range(len(param_names)):
            param_map[param_names[i]] = data_array[i]

        return param_map

    for name in param_names:
        if not name in param_map.keys():
            print("Input {} does not exist!".format(name))
            sys.exit()

    return param_map


def read_outputs(io_folder, out_names):
    outputs = []
    data_array = []
    name_array = []
    for i in range(len(out_names)):
        file_name = io_folder + '/output_' + str(i) + '.pb'
        name, data = read_pb_file(file_name)
        data_array.append(data)
        if name:
            name_array.append(name)

    if len(name_array) < len(data_array):
        return data_array

    for name in out_names:
        index = name_array.index(name)
        outputs.append(data_array[index])

    return outputs


def model_parameter_names(model_file_name):
    with open(model_file_name, 'rb') as pfile:
        data_str = pfile.read()
        model_proto = onnx.ModelProto()
        model_proto.ParseFromString(data_str)
        init_names = set([(i.name) for i in model_proto.graph.initializer])
        param_names = [
            input.name for input in model_proto.graph.input
            if input.name not in init_names
        ]

        return param_names


def model_output_names(model_file_name):
    with open(model_file_name, 'rb') as pfile:
        data_str = pfile.read()
        model_proto = onnx.ModelProto()
        model_proto.ParseFromString(data_str)
        output_names = [out.name for out in model_proto.graph.output]

        return output_names


def get_input_shapes(sample_case, param_names):
    param_shape_map = {}
    name_array = []
    shape_array = []
    for i in range(len(param_names)):
        file_name = sample_case + '/input_' + str(i) + '.pb'
        name, data = read_pb_file(file_name)
        param_shape_map[name] = data.shape
        shape_array.append(data.shape)
        if name:
            name_array.append(name)

    if len(name_array) < len(shape_array):
        param_shape_map = {}
        for i in range(len(param_names)):
            param_shape_map[param_names[i]] = shape_array[i]

        return param_shape_map

    for name in param_names:
        if not name in param_shape_map:
            print("Input {} does not exist!".format(name))
            sys.exit()

    return param_shape_map


def run_one_case(model, param_map):
    # convert np array to model argument
    pp = {}
    for key, val in param_map.items():
charlie's avatar
charlie committed
250
        pp[key] = migraphx.to_gpu(migraphx.argument(val))
251
252

    # run the model
charlie's avatar
charlie committed
253
    model_outputs = model.run(pp)
254

charlie's avatar
charlie committed
255
    outputs = [];
256
    for output in model_outputs:
charlie's avatar
charlie committed
257
258
        host_output = migraphx.from_gpu(output)
        outputs.append(np.array(host_output))
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    return outputs


def check_correctness(gold_outputs, outputs, rtol=1e-3, atol=1e-3):
    if len(gold_outputs) != len(outputs):
        print("Number of outputs {} is not equal to expected number {}".format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
            print("\nOutput {} is incorrect ...".format(i))
            print("Expected value: \n{}".format(gold_outputs[i]))
            print("......")
            print("Actual value: \n{}\n".format(outputs[i]))
            ret = False

    return ret


# check if model input parameter shapes same as data
# if not the same put it in the return dict
def tune_input_shape(model, input_data):
    param_shapes = model.get_parameter_shapes()
    input_shapes = {}
    for name, s in param_shapes.items():
        assert name in input_data
        data_shape = list(input_data[name].shape)
        if not np.array_equal(data_shape, s.lens()):
            input_shapes[name] = data_shape

    return input_shapes


def main():
    args = parse_args()
    test_loc = args.test_dir
    target = args.target
    default_dd_val = parse_dyn_dim_str(args.default_dyn_dim_value)
    test_name = os.path.basename(os.path.normpath(test_loc))

    print("Running test \"{}\" on target \"{}\" ...\n".format(
        test_name, target))

    # get model full path
    model_name = get_model_name(test_loc)
    model_path_name = test_loc + '/' + model_name

    # get param names
    param_names = model_parameter_names(model_path_name)

    # get output names
    output_names = model_output_names(model_path_name)

    # read and compile model
    if (args.map_dyn_input_dims is not None):
        map_val = parse_map_dyn_input_str(args.map_dyn_input_dims)
        model = migraphx.parse_onnx(model_path_name,
                                    default_dyn_dim_value=default_dd_val,
                                    map_dyn_input_dims=map_val)
    else:
        model = migraphx.parse_onnx(model_path_name,
                                    default_dyn_dim_value=default_dd_val)
charlie's avatar
charlie committed
324
    model.compile(migraphx.get_target(target), offload_copy=False)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

    # get test cases
    cases = get_test_cases(test_loc)
    case_num = len(cases)
    correct_num = 0
    for case_name in cases:
        io_folder = test_loc + '/' + case_name
        input_data = wrapup_inputs(
            io_folder, param_names)  # {parameter: data as np.array}
        gold_outputs = read_outputs(
            io_folder, output_names)  # [data in output name order]

        # run the model and return outputs
        output_data = run_one_case(model, input_data)

        # check output correctness
        ret = check_correctness(gold_outputs, output_data)
        if ret:
            correct_num += 1

        output_str = "PASSED" if ret else "FAILED"
        print("\tCase {}: {}".format(case_name, output_str))

    print("\nTest \"{}\" has {} cases:".format(test_name, case_num))
    print("\t Passed: {}".format(correct_num))
    print("\t Failed: {}".format(case_num - correct_num))
    if case_num > correct_num:
        error_num = case_num - correct_num
        raise ValueError(str(error_num) + " cases failed!")


if __name__ == "__main__":
    main()