simplify_qdq_test.cpp 31.9 KB
Newer Older
turneram's avatar
turneram committed
1
2
3
4
5
6
7
8
9
10
11
12
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/program.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/instruction.hpp>
#include <test.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/verify.hpp>
#include <migraphx/ref/target.hpp>
13
#include <migraphx/apply_alpha_beta.hpp>
turneram's avatar
turneram committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

bool is_convolution(const migraphx::instruction& ins) { return ins.name() == "convolution"; }
bool is_dot(const migraphx::instruction& ins) { return ins.name() == "dot"; }

void run_pass(migraphx::module& m)
{
    migraphx::simplify_qdq sqdq;
    sqdq.apply(m);
}

migraphx::instruction_ref add_quantize_op(migraphx::module& m,
                                          const std::string& name,
                                          migraphx::instruction_ref x,
                                          migraphx::instruction_ref scale,
                                          migraphx::instruction_ref shift)
{
    auto lens = x->get_shape().lens();
    migraphx::instruction_ref scale_mb;
    if(scale->get_shape().lens().front() == 1)
        scale_mb =
34
            m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), scale);
turneram's avatar
turneram committed
35
    else
36
37
        scale_mb = m.add_instruction(
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", lens}}), scale);
turneram's avatar
turneram committed
38
    auto shift_mb =
39
        m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), shift);
turneram's avatar
turneram committed
40
41
42
43
44
45
46
47
48
49
50
51
    return m.add_instruction(migraphx::make_op(name), x, scale_mb, shift_mb);
}

migraphx::instruction_ref add_quantize_op(migraphx::module& m,
                                          const std::string& name,
                                          migraphx::instruction_ref x,
                                          migraphx::instruction_ref scale)
{
    auto lens = x->get_shape().lens();
    migraphx::instruction_ref scale_mb;
    if(scale->get_shape().lens().front() == 1)
        scale_mb =
52
            m.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", lens}}), scale);
turneram's avatar
turneram committed
53
    else
54
55
        scale_mb = m.add_instruction(
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", lens}}), scale);
turneram's avatar
turneram committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    return m.add_instruction(migraphx::make_op(name), x, scale_mb);
}

TEST_CASE(remove_qdq)
{
    migraphx::shape sh1{migraphx::shape::float_type, {100, 100}};
    migraphx::shape sh2{migraphx::shape::float_type, {100, 100}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d1, d2);
        m1.add_return({add});
    }

    migraphx::module m2;
    {
        auto t1 = m2.add_parameter("t1", sh1);
        auto t2 = m2.add_parameter("t2", sh2);

        auto add = m2.add_instruction(migraphx::make_op("add"), t1, t2);
        m2.add_return({add});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(qdq_different_scales)
{
    migraphx::shape sh1{migraphx::shape::float_type, {100, 100}};
    migraphx::shape sh2{migraphx::shape::float_type, {100, 100}};

    migraphx::module m1;
    {
        auto t1     = m1.add_parameter("t1", sh1);
        auto t2     = m1.add_parameter("t2", sh2);
        auto scale1 = m1.add_literal(0.5f);
        auto scale2 = m1.add_literal(0.4f);
        auto zero   = m1.add_literal(std::int8_t{0});

        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale1, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale2, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale1, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale2, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d1, d2);
        m1.add_return({add});
    }

    migraphx::module m2 = m1;

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

131
132
133
134
135
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
136
137
138
139
140
141
142
143
144
145
146
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
        auto t1     = m2.add_parameter("t1", sh1);
        auto t2     = m2.add_parameter("t2", sh2);
        auto scale  = m2.add_literal(0.5f);
        auto zero   = m2.add_literal(std::int8_t{0});
        auto scale1 = m2.add_literal(0.25f);

147
148
149
150
        auto q1  = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2  = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
        auto d3  = add_quantize_op(m2, "dequantizelinear", dot, scale1);
turneram's avatar
turneram committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        m2.add_return({d3});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_non_zero_point)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{1});

170
171
172
173
174
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
175
176
177
178
179
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
180
181
182
        auto t1  = m2.add_parameter("t1", sh1);
        auto t2  = m2.add_parameter("t2", sh2);
        auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
turneram's avatar
turneram committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        m2.add_return({dot});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_uint8)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::uint8_t{0});

202
203
204
205
206
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
207
208
209
210
211
        m1.add_return({dot});
    }

    migraphx::module m2;
    {
212
213
214
        auto t1  = m2.add_parameter("t1", sh1);
        auto t2  = m2.add_parameter("t2", sh2);
        auto dot = m2.add_instruction(migraphx::make_op("dot"), t1, t2);
turneram's avatar
turneram committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        m2.add_return({dot});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(dot_add)
{
    migraphx::shape sh1{migraphx::shape::float_type, {1280, 1000}};
    migraphx::shape sh2{migraphx::shape::float_type, {1000, 1024}};
    migraphx::shape sh3{migraphx::shape::float_type, {1280, 1024}};

    migraphx::module m1;
    {
        auto t1    = m1.add_parameter("t1", sh1);
        auto t2    = m1.add_parameter("t2", sh2);
        auto ab    = m1.add_parameter("ab", sh3);
        auto scale = m1.add_literal(0.5f);
        auto zero  = m1.add_literal(std::int8_t{0});

236
237
238
239
240
        auto q1  = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
        auto d1  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto q2  = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        auto q3  = add_quantize_op(m1, "quantizelinear", dot, scale, zero);
        auto d3  = add_quantize_op(m1, "dequantizelinear", q3, scale, zero);
        auto add = m1.add_instruction(migraphx::make_op("add"), d3, ab);
        m1.add_return({add});
    }

    migraphx::module m2;
    {
        auto t1     = m2.add_parameter("t1", sh1);
        auto t2     = m2.add_parameter("t2", sh2);
        auto ab     = m2.add_parameter("ab", sh3);
        auto scale  = m2.add_literal(0.5f);
        auto zero   = m2.add_literal(std::int8_t{0});
        auto scale1 = m2.add_literal(0.25f);

256
257
258
        auto q1  = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
        auto q2  = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
        auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q1, q2);
turneram's avatar
turneram committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        auto d3  = add_quantize_op(m2, "dequantizelinear", dot, scale1);
        auto add = m2.add_instruction(migraphx::make_op("add"), d3, ab);
        m2.add_return({add});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        m1.add_return({c1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});
        auto scale1  = m2.add_literal(0.25f);

        auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     q1,
                                     weights);
        auto d6 = add_quantize_op(m2, "dequantizelinear", c1, scale1);
        m2.add_return({d6});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_multi_scale)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};
    migraphx::shape s8{migraphx::shape::float_type, {320}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto scale   = m1.add_literal(migraphx::generate_literal(s8, 0));
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        m1.add_return({c1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto scale   = m2.add_literal(migraphx::generate_literal(s8, 0));
        auto zero    = m2.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m2, "dequantizelinear", weights, scale, zero);
        auto c1 = m2.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     input,
                                     d1);
        m2.add_return({c1});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_bias_add)
{
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto input   = m1.add_parameter("input", s7);
        auto weights = m1.add_parameter("weights", s4);
        auto bias    = m1.add_parameter("bias", s6);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto d2 = add_quantize_op(m1, "dequantizelinear", bias, scale, zero);
        auto q1 = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1 = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        auto b1 = m1.add_instruction(
396
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
turneram's avatar
turneram committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        auto a1 = m1.add_instruction(migraphx::make_op("add"), c1, b1);
        m1.add_return({a1});
    }

    migraphx::module m2;
    {
        auto input   = m2.add_parameter("input", s7);
        auto weights = m2.add_parameter("weights", s4);
        auto bias    = m2.add_parameter("bias", s6);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});
        auto scale1  = m2.add_literal(0.25f);

        auto d2 = add_quantize_op(m2, "dequantizelinear", bias, scale, zero);
        auto q1 = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1 = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     q1,
                                     weights);
        auto d6 = add_quantize_op(m2, "dequantizelinear", c1, scale1);
        auto b1 = m2.add_instruction(
422
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
turneram's avatar
turneram committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        auto a1 = m2.add_instruction(migraphx::make_op("add"), d6, b1);
        m2.add_return({a1});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(conv_pooling_dot)
{
    migraphx::shape s2{migraphx::shape::int8_type, {1280, 1000}};
    migraphx::shape s3{migraphx::shape::int8_type, {1000}};
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    migraphx::module m1;
    {
        auto db      = m1.add_parameter("db", s2); // dot input b
        auto ab      = m1.add_parameter("ab", s3); // add input b
        auto weights = m1.add_parameter("weights", s4);
        auto bias    = m1.add_parameter("bias", s6);
        auto input   = m1.add_parameter("input", s7);
        auto scale   = m1.add_literal(0.5f);
        auto zero    = m1.add_literal(std::int8_t{0});

        auto d1  = add_quantize_op(m1, "dequantizelinear", weights, scale, zero);
        auto d2  = add_quantize_op(m1, "dequantizelinear", bias, scale, zero);
        auto d3  = add_quantize_op(m1, "dequantizelinear", ab, scale, zero);
        auto d4  = add_quantize_op(m1, "dequantizelinear", db, scale, zero);
        auto q1  = add_quantize_op(m1, "quantizelinear", input, scale, zero);
        auto d5  = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
        auto c1  = m1.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        auto bc1 = m1.add_instruction(
464
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
465
466
        auto a1  = m1.add_instruction(migraphx::make_op("add"), c1, bc1);
        auto ap  = m1.add_instruction(migraphx::make_op("pooling",
turneram's avatar
turneram committed
467
468
469
470
471
472
                                                       {{"mode", "average"},
                                                        {"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"lengths", {7, 7}},
                                                        {"ceil_mode", 0}}),
                                     a1);
473
474
475
476
477
478
        auto fl  = m1.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
        auto q4  = add_quantize_op(m1, "quantizelinear", fl, scale, zero);
        auto d8  = add_quantize_op(m1, "dequantizelinear", q4, scale, zero);
        auto dot = m1.add_instruction(migraphx::make_op("dot"), d8, d4);
        auto q5  = add_quantize_op(m1, "quantizelinear", dot, scale, zero);
        auto d9  = add_quantize_op(m1, "dequantizelinear", q5, scale, zero);
479
480
        auto mb1 =
            m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        auto a2 = m1.add_instruction(migraphx::make_op("add"), d9, mb1);
        m1.add_return({a2});
    }

    migraphx::module m2;
    {
        auto db      = m2.add_parameter("db", s2); // dot input b
        auto ab      = m2.add_parameter("ab", s3); // add input b
        auto weights = m2.add_parameter("weights", s4);
        auto bias    = m2.add_parameter("bias", s6);
        auto input   = m2.add_parameter("input", s7);
        auto scale   = m2.add_literal(0.5f);
        auto zero    = m2.add_literal(std::int8_t{0});
        auto scale1  = m2.add_literal(0.25f);
        auto scale2  = m2.add_literal(0.25f);

        auto d2  = add_quantize_op(m2, "dequantizelinear", bias, scale, zero);
        auto d3  = add_quantize_op(m2, "dequantizelinear", ab, scale, zero);
        auto q1  = add_quantize_op(m2, "quantizelinear", input, scale, zero);
        auto c1  = m2.add_instruction(migraphx::make_op("quant_convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     q1,
                                     weights);
        auto d5  = add_quantize_op(m2, "dequantizelinear", c1, scale1);
        auto bc1 = m2.add_instruction(
510
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
511
512
        auto a1  = m2.add_instruction(migraphx::make_op("add"), d5, bc1);
        auto ap  = m2.add_instruction(migraphx::make_op("pooling",
turneram's avatar
turneram committed
513
514
515
516
517
518
                                                       {{"mode", "average"},
                                                        {"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"lengths", {7, 7}},
                                                        {"ceil_mode", 0}}),
                                     a1);
519
520
521
522
        auto fl  = m2.add_instruction(migraphx::make_op("flatten", {{"axis", 1}}), ap);
        auto q4  = add_quantize_op(m2, "quantizelinear", fl, scale, zero);
        auto dot = m2.add_instruction(migraphx::make_op("quant_dot"), q4, db);
        auto d9  = add_quantize_op(m2, "dequantizelinear", dot, scale2);
523
524
        auto mb1 =
            m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        auto a2 = m2.add_instruction(migraphx::make_op("add"), d9, mb1);
        m2.add_return({a2});
    }

    run_pass(m1);
    EXPECT(m1 == m2);
}

TEST_CASE(mobilenet_snippet)
{
    migraphx::shape s2{migraphx::shape::int8_type, {1280, 1000}};
    migraphx::shape s3{migraphx::shape::int8_type, {1000}};
    migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
    migraphx::shape s6{migraphx::shape::int32_type, {1280}};
    migraphx::shape s7{migraphx::shape::float_type, {1, 320, 7, 7}};

    auto create_module = [&]() {
        migraphx::module mm;
        auto db      = mm.add_parameter("db", s2); // dot input b
        auto ab      = mm.add_parameter("ab", s3); // add input b
        auto weights = mm.add_parameter("weights", s4);
        auto bias    = mm.add_parameter("bias", s6);
        auto input   = mm.add_parameter("input", s7);
        auto scale   = mm.add_literal(0.5f);
        auto zero    = mm.add_literal(std::int8_t{0});

        auto d1  = add_quantize_op(mm, "dequantizelinear", weights, scale, zero);
        auto d2  = add_quantize_op(mm, "dequantizelinear", bias, scale, zero);
        auto d3  = add_quantize_op(mm, "dequantizelinear", ab, scale, zero);
        auto d4  = add_quantize_op(mm, "dequantizelinear", db, scale, zero);
        auto q1  = add_quantize_op(mm, "quantizelinear", input, scale, zero);
        auto d5  = add_quantize_op(mm, "dequantizelinear", q1, scale, zero);
        auto c1  = mm.add_instruction(migraphx::make_op("convolution",
                                                       {{"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"dilation", {1, 1}},
                                                        {"group", 1},
                                                        {"padding_mode", 0}}),
                                     d5,
                                     d1);
        auto bc1 = mm.add_instruction(
566
            migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {1, 1280, 7, 7}}}), d2);
567
568
569
570
        auto a1  = mm.add_instruction(migraphx::make_op("add"), c1, bc1);
        auto q2  = add_quantize_op(mm, "quantizelinear", a1, scale, zero);
        auto d6  = add_quantize_op(mm, "dequantizelinear", q2, scale, zero);
        auto ap  = mm.add_instruction(migraphx::make_op("pooling",
turneram's avatar
turneram committed
571
572
573
574
575
576
                                                       {{"mode", "average"},
                                                        {"padding", {0, 0, 0, 0}},
                                                        {"stride", {1, 1}},
                                                        {"lengths", {7, 7}},
                                                        {"ceil_mode", 0}}),
                                     d6);
577
578
579
580
581
582
583
584
        auto q3  = add_quantize_op(mm, "quantizelinear", ap, scale, zero);
        auto d7  = add_quantize_op(mm, "dequantizelinear", q3, scale, zero);
        auto rs  = mm.add_instruction(migraphx::make_op("reshape", {{"dims", {1, -1}}}), d7);
        auto q4  = add_quantize_op(mm, "quantizelinear", rs, scale, zero);
        auto d8  = add_quantize_op(mm, "dequantizelinear", q4, scale, zero);
        auto dot = mm.add_instruction(migraphx::make_op("dot"), d8, d4);
        auto q5  = add_quantize_op(mm, "quantizelinear", dot, scale, zero);
        auto d9  = add_quantize_op(mm, "dequantizelinear", q5, scale, zero);
585
586
        auto mb1 =
            mm.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1000}}}), d3);
turneram's avatar
turneram committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        auto a2 = mm.add_instruction(migraphx::make_op("add"), d9, mb1);
        mm.add_return({a2});

        return mm;
    };

    auto mod1 = create_module();
    auto mod2 = create_module();

    run_pass(mod2);

    auto match_qdq = migraphx::match::name("dequantizelinear")(
        migraphx::match::arg(0)(migraphx::match::name("quantizelinear")));
    auto ins1 = migraphx::match::find_match(mod1, match_qdq);
    auto ins2 = migraphx::match::find_match(mod2, match_qdq);

    EXPECT((ins1.result != mod1.end()) and (ins2.result == mod2.end()));
    EXPECT(any_of(mod1, &is_convolution));
    EXPECT(none_of(mod2, &is_convolution));
    EXPECT(any_of(mod1, &is_dot));
    EXPECT(none_of(mod2, &is_dot));
}

TEST_CASE(conv_correctness)
{
    migraphx::shape si{migraphx::shape::float_type, {2, 3, 4, 4}};
    migraphx::shape sw{migraphx::shape::int8_type, {2, 3, 3, 3}};

    migraphx::program p1;
    {
        auto* m1     = p1.get_main_module();
        auto input   = m1->add_parameter("input", si);
        auto weights = m1->add_parameter("weights", sw);
        auto scale_i = m1->add_literal(0.5f);
        auto scale_w = m1->add_literal(0.1f);
        auto zero    = m1->add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(*m1, "dequantizelinear", weights, scale_w, zero);
        auto q1 = add_quantize_op(*m1, "quantizelinear", input, scale_i, zero);
        auto d5 = add_quantize_op(*m1, "dequantizelinear", q1, scale_i, zero);
        auto c1 = m1->add_instruction(migraphx::make_op("convolution",
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
                                      d5,
                                      d1);
        m1->add_return({c1});
        run_pass(*m1);
    }

    migraphx::program p2;
    {
        auto* m2     = p2.get_main_module();
        auto input   = m2->add_parameter("input", si);
        auto weights = m2->add_parameter("weights", sw);
        auto scale   = m2->add_literal(0.1f);
        auto zero    = m2->add_literal(std::int8_t{0});

        auto d1 = add_quantize_op(*m2, "dequantizelinear", weights, scale, zero);
        auto c1 = m2->add_instruction(migraphx::make_op("convolution",
                                                        {{"padding", {0, 0, 0, 0}},
                                                         {"stride", {1, 1}},
                                                         {"dilation", {1, 1}},
                                                         {"group", 1},
                                                         {"padding_mode", 0}}),
                                      input,
                                      d1);
        m2->add_return({c1});
    }

    std::vector<float> iv(si.elements(), 4);
    auto input = migraphx::argument(si, iv.data());
    std::vector<float> wv(sw.elements(), 10);
    auto weights = migraphx::argument(sw, wv.data());
    p1.compile(migraphx::target(migraphx::ref::target{}));
    p2.compile(migraphx::target(migraphx::ref::target{}));

    auto result1 = p1.eval({{"input", input}, {"weights", weights}}).back();
    std::vector<float> rv1(16);
    result1.visit([&](auto output) { rv1.assign(output.begin(), output.end()); });
    auto result2 = p2.eval({{"input", input}, {"weights", weights}}).back();
    std::vector<float> rv2(16);
    result2.visit([&](auto output) { rv2.assign(output.begin(), output.end()); });
    EXPECT(migraphx::verify_range(rv1, rv2));
}

TEST_CASE(dot_correctness)
{
    migraphx::shape sh1{migraphx::shape::float_type, {10, 4}};
    migraphx::shape sh2{migraphx::shape::float_type, {4, 12}};
    migraphx::shape sh3{migraphx::shape::float_type, {10, 12}};

    migraphx::program p1;
    {
        auto* m1     = p1.get_main_module();
        auto a       = m1->add_parameter("a", sh1);
        auto b       = m1->add_parameter("b", sh2);
        auto scale_a = m1->add_literal(0.4f);
        auto scale_b = m1->add_literal(0.5f);
        auto zero    = m1->add_literal(std::int8_t{0});

690
691
692
693
694
        auto q1  = add_quantize_op(*m1, "quantizelinear", a, scale_a, zero);
        auto d1  = add_quantize_op(*m1, "dequantizelinear", q1, scale_a, zero);
        auto q2  = add_quantize_op(*m1, "quantizelinear", b, scale_b, zero);
        auto d2  = add_quantize_op(*m1, "dequantizelinear", q2, scale_b, zero);
        auto dot = m1->add_instruction(migraphx::make_op("dot"), d1, d2);
turneram's avatar
turneram committed
695
696
697
698
699
700
701
702
703
704
        m1->add_return({dot});

        run_pass(*m1);
    }

    migraphx::program p2;
    {
        auto* m2 = p2.get_main_module();
        auto a   = m2->add_parameter("a", sh1);
        auto b   = m2->add_parameter("b", sh2);
705
        auto dot = m2->add_instruction(migraphx::make_op("dot"), a, b);
turneram's avatar
turneram committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        m2->add_return({dot});
    }

    std::vector<float> av(sh1.elements(), 10);
    auto a = migraphx::argument(sh1, av.data());
    std::vector<float> bv(sh2.elements(), 10);
    auto b = migraphx::argument(sh2, bv.data());
    p1.compile(migraphx::target(migraphx::ref::target{}));
    p2.compile(migraphx::target(migraphx::ref::target{}));

    auto result1 = p1.eval({{"a", a}, {"b", b}}).back();
    std::vector<float> rv1(sh3.elements());
    result1.visit([&](auto output) { rv1.assign(output.begin(), output.end()); });
    auto result2 = p2.eval({{"a", a}, {"b", b}}).back();
    std::vector<float> rv2(sh3.elements());
    result2.visit([&](auto output) { rv2.assign(output.begin(), output.end()); });
    EXPECT(migraphx::verify_range(rv1, rv2));
}

int main(int argc, const char* argv[]) { test::run(argc, argv); }