parse_gru.cpp 5.42 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/map_activation_functions.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_gru : op_parser<parse_gru>
{
    std::vector<op_desc> operators() const { return {{"GRU"}}; }

    std::vector<instruction_ref> parse(const op_desc& /*opd*/,
                                       const onnx_parser& parser,
                                       onnx_parser::node_info info,
                                       std::vector<instruction_ref> args) const
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(info.attributes, "hidden_size"))
        {
            std::size_t hidden_size_att =
                parser.parse_value(info.attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(info.attributes, "direction"))
        {
            direction = info.attributes.at("direction").s();
        }

        op::rnn_direction dirct = op::rnn_direction::forward;
        if(direction == "bidirectional")
        {
            dirct = op::rnn_direction::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::rnn_direction::reverse;
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
        if(contains(info.attributes, "activations"))
        {
            auto names = info.attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
        }

        // need 4 activation functions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 4 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
            if(vec_names.size() == 1)
            {
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
            }
            else if(vec_names.size() == 2)
            {
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
            }
            else if(vec_names.size() == 3)
            {
                vec_names.push_back(vec_names.at(2));
            }
        }
        else
        {
            if(vec_names.size() == 1)
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_activation_functions().count(name) == 0);
        });
        if(name_it != vec_names.end())
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_activation_functions().at(name); });

        float clip = 0.0;
        if(contains(info.attributes, "clip"))
        {
            clip = parser.parse_value(info.attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
        if(contains(info.attributes, "linear_before_reset"))
        {
            linear_before_reset =
                parser.parse_value(info.attributes.at("linear_before_reset")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 6)
        {
            auto ins = info.add_instruction(make_op("undefined"));
            args.insert(args.end(), 6 - args.size(), ins);
        }

        // first output for concatenation of hidden states
        auto hidden_states =
            info.add_instruction(make_op("gru",
                                         {{"hidden_size", hidden_size},
                                          {"actv_func", to_value(vec_actv_funcs)},
                                          {"direction", dirct},
                                          {"clip", clip},
                                          {"linear_before_reset", linear_before_reset}}),
                                 args);

        // second output for last gru output
        auto last_output = info.add_instruction(make_op("rnn_last_hs_output"), hidden_states);

        return {hidden_states, last_output};
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx