"example/01_gemm/gemm_xdl_bf16.cpp" did not exist on "64350affc5767e7ce3fb211d8145b5c9d18017d8"
logsoftmax.cpp 5.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/logsoftmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

argument logsoftmax(hipStream_t stream,
Shucai Xiao's avatar
Shucai Xiao committed
15
16
17
                    const migraphx::shape& output_shape,
                    std::vector<migraphx::argument> args,
                    int axis)
18
19
{

Shucai Xiao's avatar
Shucai Xiao committed
20
    auto lens         = output_shape.lens();
21
    auto num_in_batch = lens[axis];
Shucai Xiao's avatar
Shucai Xiao committed
22
23
    auto batch_lens   = lens;
    batch_lens[axis]  = 1;
24
    migraphx::shape batch_shape{output_shape.type(), batch_lens};
25
26

    visit_all(args.back(), args.front())([&](auto output, auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
27
28
        const auto* input_ptr = device_cast(input.data());
        auto* output_ptr      = device_cast(output.data());
29
30
31
        visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
            hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
            hip_tensor_descriptor<n_dim> desc_data(output_shape);
32

33
34
35
36
            // use one block for items in one batch.
            // opt 1, load all data to lds then use the same approach as
            // the current optimization
            const size_t block_size = 1024;
Shucai Xiao's avatar
Shucai Xiao committed
37
38
            launch(
                stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ {
39
40
41
                size_t thr_idx = idx.local;
                size_t blk_idx = idx.group;
                using type = device_type<std::remove_cv_t<typename decltype(output)::value_type>>;
42

43
44
45
46
                // all data can be loaded to the lds once, so all operations are
                // done in lds
                MIGRAPHX_DEVICE_SHARED type lds_data[block_size + 2];
                auto batch_idx = desc_batch.multi(blk_idx);
Shucai Xiao's avatar
Shucai Xiao committed
47
                auto data_idx  = batch_idx;
48
                // load data to lds and compute the batch max
Shucai Xiao's avatar
Shucai Xiao committed
49
                size_t item_num      = num_in_batch;
50
                lds_data[block_size] = input_ptr[0];
Shucai Xiao's avatar
Shucai Xiao committed
51
                for(size_t i = thr_idx; i < num_in_batch; i += block_size)
52
                {
53
                    data_idx[axis] = i;
Shucai Xiao's avatar
Shucai Xiao committed
54
                    lds_data[i]    = input_ptr[desc_data.linear(data_idx)];
55

56
57
                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
58
                    auto size   = (item_num > block_size) ? block_size : item_num;
59
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
60
                    while(true)
61
                    {
Shucai Xiao's avatar
Shucai Xiao committed
62
                        if(thr_idx + stride < size)
63
                        {
Shucai Xiao's avatar
Shucai Xiao committed
64
65
                            lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]),
                                                      to_hip_type(lds_data[thr_idx + stride]));
66
                        }
67
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
68
                        size   = stride;
69
70
                        stride = (stride + 1) / 2;

Shucai Xiao's avatar
Shucai Xiao committed
71
72
                        if(size == 1)
                            break;
73
74
                    }

Shucai Xiao's avatar
Shucai Xiao committed
75
                    if(thr_idx == 0)
76
                    {
Shucai Xiao's avatar
Shucai Xiao committed
77
78
79
                        lds_data[block_size] = (lds_data[0] < lds_data[block_size])
                                                   ? lds_data[block_size]
                                                   : lds_data[0];
80
81
                    }
                    __syncthreads();
82
83

                    item_num -= block_size;
84
                }
85

86
                const size_t block_size1 = block_size + 1;
Shucai Xiao's avatar
Shucai Xiao committed
87
88
89
                lds_data[block_size1]    = 0;
                item_num                 = num_in_batch;
                for(size_t i = thr_idx; i < num_in_batch; i += block_size)
90
                {
91
                    data_idx[axis] = i;
92
                    lds_data[i]    = input_ptr[desc_data.linear(data_idx)] - lds_data[block_size];
Shucai Xiao's avatar
Shucai Xiao committed
93
                    lds_data[i]    = ::exp(to_hip_type(lds_data[i]));
94
95
96

                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
97
                    auto size   = (item_num > block_size) ? block_size : item_num;
98
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
99
                    while(true)
100
                    {
Shucai Xiao's avatar
Shucai Xiao committed
101
                        if(thr_idx + stride < size)
102
                        {
103
                            lds_data[thr_idx] += lds_data[thr_idx + stride];
104
                        }
105
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
106
                        size   = stride;
107
                        stride = (stride + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
108
109
                        if(size == 1)
                            break;
110
111
                    }

Shucai Xiao's avatar
Shucai Xiao committed
112
                    if(thr_idx == 0)
113
114
                    {
                        lds_data[block_size1] += lds_data[0];
115
116
                    }
                    __syncthreads();
117
118

                    item_num -= block_size;
119
120
                }

Shucai Xiao's avatar
Shucai Xiao committed
121
122
                auto log_batch_sum =
                    ::log(to_hip_type(lds_data[block_size1])) + lds_data[block_size];
123
                item_num = num_in_batch;
Shucai Xiao's avatar
Shucai Xiao committed
124
                for(size_t i = thr_idx; i < num_in_batch; i += block_size)
125
                {
Shucai Xiao's avatar
Shucai Xiao committed
126
127
                    data_idx[axis]    = i;
                    size_t index      = desc_data.linear(data_idx);
128
                    output_ptr[index] = input_ptr[index] - log_batch_sum;
129
130
                }
            });
131
132
133
134
135
136
137
138
139
140
        });
    });

    return args.back();
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx