common_dims.cpp 5.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/common_dims.hpp>
#include <migraphx/ranges.hpp>
#include <algorithm>
#include <cassert>
#include <numeric>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

template <class Iterator>
static auto compute_end_dim(Iterator start, Iterator last, std::size_t dim)
{
    std::size_t x = 1;
    auto it       = std::find_if(start, last, [&](auto i) {
        x *= i;
        return x > dim;
    });
    if(x < dim)
        return start;
    return it;
}

template <class Range>
static auto elements(const Range& r)
{
    return std::accumulate(r.begin(), r.end(), std::size_t{1}, std::multiplies<>{});
}

struct common_dim_state
{
    common_dim_state(const std::vector<std::size_t>& pdims,
                     std::vector<std::vector<std::size_t>>& paxes_map)
        : dims(&pdims), axes_map(&paxes_map), it(dims->begin())
    {
    }
    const std::vector<std::size_t>* dims            = nullptr;
    std::vector<std::vector<std::size_t>>* axes_map = nullptr;
    std::vector<std::size_t>::const_iterator it{};
    std::size_t rem = 1;
    std::size_t get() const { return *it / rem; }
    bool is_end() const { return it == dims->end(); }
    void next(std::size_t i = 1) { it += i; }
    auto dims_for(std::size_t d) const
    {
        auto dim_end = compute_end_dim(it, dims->end(), d);
        return range(it, dim_end);
    }
    void add_axes(std::size_t naxes, std::size_t start) MIGRAPHX_TIDY_CONST
    {
        auto axes = compute_axes(naxes, start);
        axes_map->push_back(std::move(axes));
    }

    void add_multi_axes(std::size_t naxes, std::size_t start) MIGRAPHX_TIDY_CONST
    {
        auto axes = compute_axes(naxes, start);
        std::transform(axes.begin(),
                       axes.end(),
                       std::back_inserter(*axes_map),
                       [&](auto axis) -> std::vector<std::size_t> { return {axis}; });
    }
    std::vector<std::size_t> compute_axes(std::size_t naxes, std::size_t start) const
    {
        if(rem != 1)
        {
            assert(start > 0);
            naxes++;
            start--;
        }
        std::vector<std::size_t> axes(naxes);
        std::iota(axes.begin(), axes.end(), start);
        return axes;
    }
};

static bool compute_common_dim(std::vector<std::size_t>& cd_dims,
                               common_dim_state& state1,
                               common_dim_state& state2)
{
    assert(state1.get() <= state2.get());
    auto d2    = state2.get();
    auto dims  = state1.dims_for(d2);
    auto n     = elements(dims);
    auto naxes = distance(dims);
    if(naxes == 0)
        return false;
    // If not divisible then we can't compute a common dim
    if((d2 % n) != 0)
        return false;
    auto rem = d2 / n;
    state1.add_multi_axes(naxes, cd_dims.size());
    state2.add_axes(rem == 1 ? naxes : naxes + 1, cd_dims.size());

    state1.rem = rem;
    state2.rem = 1;

    cd_dims.insert(cd_dims.end(), dims.begin(), dims.end());
    if(state1.rem != 1)
        cd_dims.push_back(state1.rem);
    state1.next(distance(dims));
    state2.next();
    return true;
}

common_dims common_dims::compute(const std::vector<std::size_t>& dims1,
                                 const std::vector<std::size_t>& dims2)
{
    assert(elements(dims1) > 0);
    assert(elements(dims1) == elements(dims2));
    common_dims cd;
    common_dim_state state1{dims1, cd.axes_map1};
    common_dim_state state2{dims2, cd.axes_map2};
    while(not state1.is_end() and not state2.is_end())
    {
        auto d1 = state1.get();
        auto d2 = state2.get();
        if(d1 <= d2)
        {
            if(not compute_common_dim(cd.dims, state1, state2))
                return {};
        }
        else // if(d1 > d2)
        {
            if(not compute_common_dim(cd.dims, state2, state1))
                return {};
        }
    }
    assert(elements(dims1) == elements(cd.dims));
    return cd;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx