"vscode:/vscode.git/clone" did not exist on "05fe9ca5a9f1b2ce247c0079dc61358e3887d56b"
quantization.cpp 16.2 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
6
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
7
#include <migraphx/op/mul.hpp>
8
#include <migraphx/op/add.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
10
11
12
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/multibroadcast.hpp>
13
#include <migraphx/stringutils.hpp>
14
#include <migraphx/ranges.hpp>
15
16
17
18
19
#include <utility>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
20
instruction_ref insert_quant_ins(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
21
22
23
24
25
                                 instruction_ref& ins,
                                 shape::type_t type,
                                 std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                                 float scale = 1.0f,
                                 float shift = 0.0f)
26
{
Shucai Xiao's avatar
Shucai Xiao committed
27
    if(map_ins.count(ins) > 0)
28
    {
Shucai Xiao's avatar
Shucai Xiao committed
29
        return map_ins[ins];
30
31
    }

Shucai Xiao's avatar
Shucai Xiao committed
32
    assert(ins->get_shape().type() == shape::float_type ||
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
           ins->get_shape().type() == shape::double_type ||
           ins->get_shape().type() == shape::int32_type);
    instruction_ref quant_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
36
    quant_ins    = prog.insert_instruction(std::next(ins), op::convert{type, scale, shift}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
37
    map_ins[ins] = quant_ins;
38

Shucai Xiao's avatar
Shucai Xiao committed
39
    return quant_ins;
40
41
}

Shucai Xiao's avatar
Shucai Xiao committed
42
43
44
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
Shucai Xiao's avatar
Shucai Xiao committed
45
// is very rare in the area of deeping learning, so we just do a
Shucai Xiao's avatar
Shucai Xiao committed
46
// truncate of the input to get the fp16.
47
void quantize(program& prog, const std::vector<std::string>& ins_names)
48
{
49
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
50
    for(auto ins : iterator_for(prog))
51
    {
52
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
53
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
54
55
56
        {
            continue;
        }
57

58
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
59
        // process all inputs, if input is a fp32 or fp64, convert it
60
        // to a fp16 by adding a convert operator.
61
        auto inputs = ins->inputs();
62
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
63
        for(auto input : inputs)
64
65
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
66
            if(s.type() == shape::float_type || s.type() == shape::double_type)
67
            {
68
                // if the input is a convert operator, uses its input
69
70
                // as its current input
                instruction_ref input_fp16{};
71
                if(input->name() == "convert")
72
73
74
75
76
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
77
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
78
                }
79
                converted_inputs.push_back(input_fp16);
80
            }
81
82
83
84
85
86
            else
            {
                converted_inputs.push_back(input);
            }
        }

87
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
88
        if(inputs == converted_inputs)
89
        {
90
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
91
92
93
94
95
96
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
100
101
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
102
            {
Shucai Xiao's avatar
Shucai Xiao committed
103
                prog.replace_instruction(ins, ins_orig_type);
Shucai Xiao's avatar
Shucai Xiao committed
104
            }
Shucai Xiao's avatar
Shucai Xiao committed
105
106
107
108
109
110
111
112
113
        }

        prog.replace_instruction(ins, op, converted_inputs);
    }
}

void quantize(program& prog) { quantize(prog, {"all"}); }

// int8 quantization is different from fp16 since int8 can only handle value
Shucai Xiao's avatar
Shucai Xiao committed
114
// -128 ~ 127. To convert the float or double to int8, we need a scale and
Shucai Xiao's avatar
Shucai Xiao committed
115
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
Shucai Xiao's avatar
Shucai Xiao committed
116
// To simplify the changes, we consider shift as 0.0f for now.
Shucai Xiao's avatar
Shucai Xiao committed
117
118
119
120
void quantize_int8(program& prog, const std::vector<std::string>& ins_names)
{
    // For now, we only support the int8 quantization of gemm and convolution
    std::vector<std::string> op_names = {"dot", "convolution"};
Shucai Xiao's avatar
Shucai Xiao committed
121
    if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
Shucai Xiao's avatar
Shucai Xiao committed
122
           return (std::find(op_names.begin(), op_names.end(), name) != op_names.end());
Shucai Xiao's avatar
Shucai Xiao committed
123
       }))
Shucai Xiao's avatar
Shucai Xiao committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
    }

    // tmp value used just testing
    std::vector<std::pair<float, float>> int8_param{{1.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 0.0f}};

    std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
    for(auto ins : iterator_for(prog))
    {
        if(not contains(ins_names, ins->name()))
        {
            continue;
        }

        shape::type_t orig_type = ins->get_shape().type();

        // for the dot operator, there could be 2 or 3 input arguments
        // if the 3rd argument is available, convert it to an int32.
        std::vector<instruction_ref> converted_inputs;

        // process all inputs, if input is a fp32 or fp64, convert it
Shucai Xiao's avatar
Shucai Xiao committed
146
        // to a int8 type by adding a convert operator and replace
Shucai Xiao's avatar
Shucai Xiao committed
147
        // the operator with the corresponding int8 version
Shucai Xiao's avatar
Shucai Xiao committed
148
        auto inputs             = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
149
150
151
        std::size_t param_index = 0;
        for(auto input : inputs)
        {
Shucai Xiao's avatar
Shucai Xiao committed
152
153
            // In general, the target_type is int8, but for the dot
            // operation, if it has 3 inputs, then the last one should
Shucai Xiao's avatar
Shucai Xiao committed
154
155
            // be converted to int32_type
            shape::type_t quant_type = shape::int8_type;
Shucai Xiao's avatar
Shucai Xiao committed
156
            auto param               = int8_param[param_index++];
Shucai Xiao's avatar
Shucai Xiao committed
157
            if(ins->name() == "dot" and inputs.size() == 3 and input == inputs.back())
Shucai Xiao's avatar
Shucai Xiao committed
158
            {
Shucai Xiao's avatar
Shucai Xiao committed
159
160
                quant_type = shape::int32_type;
            }
Shucai Xiao's avatar
Shucai Xiao committed
161

Shucai Xiao's avatar
Shucai Xiao committed
162
            auto s = input->get_shape();
163
            if((s.type() == shape::float_type || s.type() == shape::double_type ||
Shucai Xiao's avatar
Shucai Xiao committed
164
165
                s.type() == shape::int32_type) &&
               s.type() != quant_type)
Shucai Xiao's avatar
Shucai Xiao committed
166
167
168
169
170
171
172
            {
                // if the input is a convert operator, uses its input
                // as its current input
                instruction_ref quant_input{};
                if(input->name() == "convert")
                {
                    auto tmp_ins = input->inputs().front();
Shucai Xiao's avatar
Shucai Xiao committed
173
                    if(tmp_ins->get_shape().type() == quant_type)
Shucai Xiao's avatar
Shucai Xiao committed
174
175
176
177
178
                    {
                        quant_input = input->inputs().front();
                    }
                    else
                    {
Shucai Xiao's avatar
Shucai Xiao committed
179
180
                        quant_input = insert_quant_ins(
                            prog, input, quant_type, map_quant_ins, param.first, param.second);
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
                    }
                }
                else
184
                {
Shucai Xiao's avatar
Shucai Xiao committed
185
186
                    quant_input = insert_quant_ins(
                        prog, input, quant_type, map_quant_ins, param.first, param.second);
187
                }
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                converted_inputs.push_back(quant_input);
            }
            else
            {
                converted_inputs.push_back(input);
            }
        }

        // no change for the input, go to the next instruction
        if(inputs == converted_inputs)
        {
            continue;
        }

        // When converting from other types to int8_type, there are parameters
        // used as scale and shift(.0f), which will generate results diffrent from
        // the original results. To adjust the output to be "correct(approximatly
Shucai Xiao's avatar
Shucai Xiao committed
205
        // equal)", we need additional calculation for the adjustment
Shucai Xiao's avatar
Shucai Xiao committed
206
        if(ins->name() == "dot")
Shucai Xiao's avatar
Shucai Xiao committed
207
        {
Shucai Xiao's avatar
Shucai Xiao committed
208
            auto dot_op     = any_cast<op::dot>(ins->get_operator());
209
            float new_alpha = dot_op.alpha / (int8_param[0].first * int8_param[1].first);
Shucai Xiao's avatar
Shucai Xiao committed
210
211
            float new_beta  = dot_op.beta;
            // We need additional checking about the quant_alpha value. If
212
213
214
            // abs(quant_alpha) > 50 (some tmp value set here), we can convert
            // it to an integer as the new_alpha in the quant_dot
            float threshold = 50.0f;
Shucai Xiao's avatar
Shucai Xiao committed
215
            if(fabs(new_alpha) >= threshold && fabs(new_beta) >= threshold)
216
217
            {
                int32_t quant_alpha = static_cast<int32_t>(new_alpha);
Shucai Xiao's avatar
Shucai Xiao committed
218
219
220
                int32_t quant_beta  = static_cast<int32_t>(new_beta);
                shape quant_shape   = compute_shape(op::quant_dot{1, 0}, converted_inputs);
                if(quant_shape.type() == orig_type)
221
                {
Shucai Xiao's avatar
Shucai Xiao committed
222
223
                    prog.replace_instruction(
                        ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
224
225
226
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
227
228
                    auto quant_dot = prog.insert_instruction(
                        ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
229
230
231
                    prog.replace_instruction(ins, op::convert{orig_type}, quant_dot);
                }
            }
Shucai Xiao's avatar
Shucai Xiao committed
232
233
            // only alpha can be quantized, quantization of beta will cause
            // big error, so we have to manually do the multiplication and
234
            // addition
Shucai Xiao's avatar
Shucai Xiao committed
235
            else if(fabs(new_alpha) >= threshold)
236
237
            {
                int32_t quant_alpha = static_cast<int32_t>(new_alpha);
Shucai Xiao's avatar
Shucai Xiao committed
238
239
                int32_t quant_beta  = 0;
                if(orig_type == shape::int32_type)
240
                {
Shucai Xiao's avatar
Shucai Xiao committed
241
                    if(inputs.size() == 2 or dot_op.beta == 0.0f)
242
                    {
Shucai Xiao's avatar
Shucai Xiao committed
243
244
                        prog.replace_instruction(
                            ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
245
246
247
248
                    }
                    // if there are 3 inputs, we need to consider the third argument
                    else
                    {
Shucai Xiao's avatar
Shucai Xiao committed
249
250
                        auto q_dot = prog.insert_instruction(
                            ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
251
252
                        std::vector<float> vec_beta(q_dot->get_shape().elements(), dot_op.beta);
                        auto l_beta = prog.add_literal(literal{orig_type, vec_beta});
Shucai Xiao's avatar
Shucai Xiao committed
253
254
                        auto beta_c =
                            prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
255
256
257
258
259
                        prog.replace_instruction(ins, op::add{}, q_dot, beta_c);
                    }
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
260
                    if(inputs.size() == 2 or dot_op.beta == 0.0f)
261
                    {
Shucai Xiao's avatar
Shucai Xiao committed
262
263
                        auto q_dot = prog.insert_instruction(
                            ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
264
265
266
267
268
                        prog.replace_instruction(ins, op::convert{orig_type}, q_dot);
                    }
                    // if there are 3 inputs, we need to consider the third argument
                    else
                    {
Shucai Xiao's avatar
Shucai Xiao committed
269
270
                        auto q_dot = prog.insert_instruction(
                            ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
271
272
273
                        auto oq_dot = prog.insert_instruction(ins, op::convert{orig_type}, q_dot);
                        std::vector<float> vec_beta(q_dot->get_shape().elements(), dot_op.beta);
                        auto l_beta = prog.add_literal(literal{oq_dot->get_shape(), vec_beta});
Shucai Xiao's avatar
Shucai Xiao committed
274
275
                        auto beta_c =
                            prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
276
277
278
279
280
281
282
283
                        prog.replace_instruction(ins, op::add{}, q_dot, beta_c);
                    }
                }
            }
            else
            {
                auto q_dot = prog.insert_instruction(ins, op::quant_dot{1, 0}, converted_inputs);
                std::vector<float> vec_alpha(q_dot->get_shape().elements(), new_alpha);
Shucai Xiao's avatar
Shucai Xiao committed
284
                if(orig_type == shape::int32_type)
285
286
                {
                    auto l_alpha = prog.add_literal(literal(ins->get_shape(), vec_alpha));
Shucai Xiao's avatar
Shucai Xiao committed
287
                    if(converted_inputs.size() == 2 or dot_op.beta == 0.0f)
288
289
290
291
292
293
294
                    {
                        prog.replace_instruction(ins, op::mul{}, l_alpha, q_dot);
                    }
                    // case of 3 arguments
                    else
                    {
                        std::vector<float> vec_beta(ins->get_shape().elements(), new_beta);
Shucai Xiao's avatar
Shucai Xiao committed
295
                        auto l_beta   = prog.add_literal(literal(ins->get_shape(), vec_beta));
296
                        auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, q_dot);
Shucai Xiao's avatar
Shucai Xiao committed
297
298
                        auto beta_c =
                            prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
299
300
301
302
303
                        prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c);
                    }
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
304
                    auto oq_dot  = prog.insert_instruction(ins, op::convert{orig_type}, q_dot);
305
                    auto l_alpha = prog.add_literal(literal(ins->get_shape(), vec_alpha));
Shucai Xiao's avatar
Shucai Xiao committed
306
                    if(converted_inputs.size() == 2 or dot_op.beta == 0.0f)
307
308
309
310
311
312
313
                    {
                        prog.replace_instruction(ins, op::mul{}, l_alpha, oq_dot);
                    }
                    // case of 3 arguments
                    else
                    {
                        std::vector<float> vec_beta(ins->get_shape().elements(), new_beta);
Shucai Xiao's avatar
Shucai Xiao committed
314
                        auto l_beta   = prog.add_literal(literal(ins->get_shape(), vec_beta));
315
                        auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, oq_dot);
Shucai Xiao's avatar
Shucai Xiao committed
316
317
                        auto beta_c =
                            prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
318
319
320
321
                        prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c);
                    }
                }
            }
Shucai Xiao's avatar
Shucai Xiao committed
322
        }
Shucai Xiao's avatar
Shucai Xiao committed
323
        else if(ins->name() == "convolution")
Shucai Xiao's avatar
Shucai Xiao committed
324
        {
Shucai Xiao's avatar
Shucai Xiao committed
325
            // Current MIOpen convolution does not support alpha and beta,
Shucai Xiao's avatar
Shucai Xiao committed
326
            // so we need a separate multiply to adjust the output
Shucai Xiao's avatar
Shucai Xiao committed
327
328
329
330
331
332
            auto conv_op       = any_cast<op::convolution>(ins->get_operator());
            auto padding       = conv_op.padding;
            auto stride        = conv_op.stride;
            auto dilation      = conv_op.dilation;
            auto padding_mode  = conv_op.padding_mode;
            auto group         = conv_op.group;
Shucai Xiao's avatar
Shucai Xiao committed
333
            auto adjust_factor = 1.0 / (int8_param[0].first * int8_param[1].first);
Shucai Xiao's avatar
Shucai Xiao committed
334

335
336
            shape quant_shape = compute_shape(op::quant_convolution{}, converted_inputs);
            std::vector<float> vec_factor(quant_shape.elements(), adjust_factor);
Shucai Xiao's avatar
Shucai Xiao committed
337
338
            auto fl = prog.add_literal(literal{{orig_type, quant_shape.lens()}, vec_factor});
            if(quant_shape.type() == orig_type)
339
            {
Shucai Xiao's avatar
Shucai Xiao committed
340
                if(adjust_factor == 1.0f)
341
                {
Shucai Xiao's avatar
Shucai Xiao committed
342
343
344
345
                    prog.replace_instruction(
                        ins,
                        op::quant_convolution{padding, stride, dilation, padding_mode, group},
                        converted_inputs);
346
347
348
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
349
350
351
352
                    auto quant_conv = prog.replace_instruction(
                        ins,
                        op::quant_convolution{padding, stride, dilation, padding_mode, group},
                        converted_inputs);
353
354
355
356
357
                    prog.replace_instruction(ins, op::mul{}, quant_conv, fl);
                }
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
358
359
360
361
362
                auto quant_conv = prog.insert_instruction(
                    ins,
                    op::quant_convolution{padding, stride, dilation, padding_mode, group},
                    converted_inputs);
                if(adjust_factor == 1.0f)
363
364
365
366
367
368
369
370
371
                {
                    prog.replace_instruction(ins, op::convert{orig_type}, quant_conv);
                }
                else
                {
                    auto oq_conv = prog.insert_instruction(ins, op::convert{orig_type}, quant_conv);
                    prog.replace_instruction(ins, op::mul{}, oq_conv, fl);
                }
            }
Shucai Xiao's avatar
Shucai Xiao committed
372
373
374
375
376
        }
        else
        {
            MIGRAPHX_THROW("INT8_QUANTIZE: does not support operator" + ins->name());
        }
377
378
379
380
381
    }
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx