lowering.cpp 21.7 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
8
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
9
#include <unordered_map>
Paul's avatar
Paul committed
10
#include <utility>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
namespace migraphx {
13
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
14
15
16
17
18
19
20
21
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
22
23
24
25
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
26
27
28
29
{
    return x;
}

30
31
32
33
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
34
35
36
37
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
38
// args[4] -> bias
39
40
41
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
42
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
43
44
45
46
47
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
48
    op::batch_norm_inference op;
49

50
51
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
52
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
53

Paul's avatar
Paul committed
54
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
55
    {
56
57
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
58
59
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
60
61
62
63
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
64

65
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
66
67
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
68
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
69

70
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
71
72
73
74
75
76
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

                    dfor(num_batch, num_channels, image_height, image_width)(
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
77
                            assert((variance(c) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
82
                            result(n, c, h, w) = gamma(c) * (buffer(n, c, h, w) - mean(c)) /
                                                     std::sqrt(variance(c) + epsilon) +
                                                 bias(c);
                        });
                });
83
84
        }

85
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
86
        {
87
88
89
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Scott Thornton's avatar
Scott Thornton committed
90
                    dfor(num_batch, num_channels, image_height, image_width)(
91
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
92
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
93
94
95
96
97
98
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
99
        }
100
101
102
103
104

        return output;
    }
};

Paul's avatar
Paul committed
105
106
struct cpu_convolution
{
107
    op::convolution op;
Paul's avatar
Paul committed
108
109

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
110
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];

            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
146
147
struct cpu_im2col
{
148
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
149

Scott Thornton's avatar
Scott Thornton committed
150
151
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
152

wsttiger's avatar
wsttiger committed
153
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
154
    {
Scott Thornton's avatar
Scott Thornton committed
155
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
156
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
157
158
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
159
160
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
161
162
163
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
164
165
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
166
167
168
169
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

            int kdiv2_h, kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
170
171
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
172
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
173
174
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
175
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
176
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
177
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
178
179
180
181
182
183
184
185
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
186
187
188
189
190
191
192
193
194
195
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
196
197
                }
            }
Scott Thornton's avatar
Scott Thornton committed
198
        });
Scott Thornton's avatar
Scott Thornton committed
199
200
201
202
        return result;
    }
};

Paul's avatar
Paul committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
230
    op::pooling op;
Paul's avatar
Paul committed
231
232

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
233
234
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
278
    op::contiguous op;
Paul's avatar
Paul committed
279
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
280
281
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
282
    {
Paul's avatar
Paul committed
283
        assert(output_shape.standard());
Paul's avatar
Paul committed
284
285
286
287
288
289
290
291
292
293
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
        });
        return result;
    }
};

294
295
296
297
298
299
300
301
struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
302
        std::vector<std::size_t> coffsets = op.compute_offsets(output_shape, args);
Scott Thornton's avatar
Scott Thornton committed
303
        for(std::size_t l = 0; l < args.size(); l++)
304
        {
Scott Thornton's avatar
Scott Thornton committed
305
            auto argl             = args[l];
306
307
            std::size_t nelements = argl.get_shape().elements();
            visit_all(result, argl)([&](auto output, auto input) {
wsttiger's avatar
wsttiger committed
308
309
310
                auto slice_shape =
                    shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
                auto slice = make_view(slice_shape, output.data() + coffsets[l]);
wsttiger's avatar
wsttiger committed
311
                // cppcheck-suppress useStlAlgorithm
wsttiger's avatar
wsttiger committed
312
                for(std::size_t i = 0; i < nelements; i++)
wsttiger's avatar
wsttiger committed
313
314
                {
                    slice[i] = input[i];
315
316
317
318
319
320
321
                }
            });
        }
        return result;
    }
};

Paul's avatar
Paul committed
322
323
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
324
325
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Paul's avatar
Paul committed
326
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
327

Paul's avatar
Paul committed
328
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
329
330
    {
        argument result{output_shape};
Paul's avatar
Paul committed
331
        migemm(result, args[0], args[1], op.alpha, op.beta);
Paul's avatar
Paul committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        return result;
    }
};

struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
350
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
449
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
450
451
452
    }
};

Khalique's avatar
Khalique committed
453
454
455
456
457
458
459
460
461
462
463
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
464
465
466
467
468
469
470
471
472
473
474
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
475
476
477
478
479
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
480
481
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
496
497
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
572
573
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
613
614
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
615
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
616
        apply_map["batch_norm_inference"] =
617
618
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Scott Thornton's avatar
Scott Thornton committed
619
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
Khalique's avatar
Khalique committed
620
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
621
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
622
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
623
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
wsttiger's avatar
wsttiger committed
624
625
626
627
628
629
630
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
Khalique's avatar
Khalique committed
631
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
632
633
634
635
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Paul's avatar
Paul committed
636
637
638
639
640
641
642
643
644

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
645
            if(it->name() == "pooling")
Paul's avatar
Paul committed
646
647
648
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
649
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
650
            {
Paul's avatar
Paul committed
651
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
652
653
654
655
656
657
658
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
659
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
660
661
662
663
664
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
665
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
666
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
667
668
669
670
    }

    void apply_pooling(instruction_ref ins)
    {
671
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
672
        if(op.mode == "max")
Paul's avatar
Paul committed
673
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
674
        else if(op.mode == "average")
Paul's avatar
Paul committed
675
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
676
677
678
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
679
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
680
681

} // namespace cpu
682
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
683
} // namespace migraphx