simplify_algebra.cpp 36.3 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/add.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/op/mul.hpp>
6
#include <migraphx/op/concat.hpp>
7
#include <migraphx/op/slice.hpp>
8
#include <migraphx/op/convolution.hpp>
9
#include <migraphx/op/contiguous.hpp>
10
#include <migraphx/op/as_shape.hpp>
Paul's avatar
Paul committed
11
#include <migraphx/op/broadcast.hpp>
12
13
#include <migraphx/op/neg.hpp>
#include <migraphx/op/recip.hpp>
14
#include <migraphx/op/reshape.hpp>
kahmed10's avatar
kahmed10 committed
15
#include <migraphx/op/rsqrt.hpp>
16
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
17
18
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
19
20
21
22
#include <migraphx/make_op.hpp>

#include <migraphx/serialize.hpp>

23
#include <migraphx/algorithm.hpp>
Paul's avatar
Paul committed
24

Paul's avatar
Paul committed
25
namespace migraphx {
Paul's avatar
Paul committed
26
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
29
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
30
31
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
32
33
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
34
35
}

Paul's avatar
Paul committed
36
37
auto conv_const_weights()
{
Paul's avatar
Paul committed
38
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
39
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
40
41
}

42
43
44
45
46
47
48
template <class... Ms>
auto pointwise(Ms... ms)
{
    return match::has_attribute("pointwise")(match::any_of(match::nargs(1), match::nargs(2)),
                                             ms...);
}

Shucai Xiao's avatar
Shucai Xiao committed
49
50
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
51
52
53
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
54
    {
Paul's avatar
Paul committed
55
56
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
57
    }
Paul's avatar
Paul committed
58

59
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
60
    {
Paul's avatar
Paul committed
61
        auto ins      = r.result;
Paul's avatar
Paul committed
62
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
63
64
65
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
66
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
67
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
68
69
            return;

Paul's avatar
Paul committed
70
        auto new_a = p.insert_instruction(
71
72
73
74
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul  = p.insert_instruction(ins, make_op("mul"), new_a, w_ins);
Paul's avatar
Paul committed
75
76
        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
Paul's avatar
Paul committed
77
        p.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
78
    }
Paul's avatar
Paul committed
79
80
};

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

97
    void apply(module& p, match::matcher_result r) const
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
        auto slice_w_ins = p.insert_instruction(ins, w_slice_op, w_ins);

        auto new_a = p.insert_instruction(
136
137
138
139
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", slice_w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul = p.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
140
141
142

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
143
144
145
146
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
147
148
149
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
150
151
152
153
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
154

155
156
        auto new_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

        auto slice1 = p.insert_instruction(ins, slice_op, new_conv);
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
        p.replace_instruction(ins, slice1);
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
        for(auto output : conv_ins->outputs())
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
172
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
173
174
175
176
177
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
178
179
180
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
181
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
182
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
183
                match::used_once()),
Paul's avatar
Paul committed
184
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
185
186
    }

187
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
188
    {
Paul's avatar
Paul committed
189
        auto ins   = r.result;
Paul's avatar
Paul committed
190
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
191
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
192
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
193
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
194

195
196
197
        auto ax_ins = p.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = p.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
198
199
200
    }
};

Paul's avatar
Paul committed
201
struct find_add_lit_broadcast
Paul's avatar
Paul committed
202
203
204
205
206
207
208
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

209
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
210
211
212
213
214
215
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

216
217
        auto sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
218
219
220
221
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
222
{
Paul's avatar
Paul committed
223
224
    auto matcher() const
    {
Paul's avatar
Paul committed
225
        return match::name("add")(
Paul's avatar
Paul committed
226
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
227
228
    }

229
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
230
    {
Paul's avatar
Paul committed
231
232
233
234
235
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
236
237
238

        instruction_ref sumab;

Paul's avatar
Paul committed
239
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
240
241
242
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
243
244
245
            auto op     = a_ins->get_operator();
            auto presum = p.insert_instruction(
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
Paul's avatar
Paul committed
246
            sumab = p.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
247
248
249
        }
        else
        {
250
            sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
251
252
        }

253
254
        auto sumxy = p.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        p.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
255
256
257
    }
};

Paul's avatar
Paul committed
258
259
260
261
struct find_inner_broadcast
{
    auto matcher() const
    {
262
263
        return pointwise(
            match::nargs(2),
Paul's avatar
Paul committed
264
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
265
266
    }

267
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
268
269
270
271
272
273
274
275
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
276
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
277
278
            return;

Paul's avatar
Paul committed
279
280
        auto op = p.insert_instruction(
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
Paul's avatar
Paul committed
281
282
283
284
        p.replace_instruction(ins, xbroadcast, op);
    }
};

285
struct find_concat_op
286
287
288
{
    auto matcher() const
    {
289
        return match::name("concat")(match::any_of[match::inputs()](
290
            match::any_of(pointwise(), match::name("broadcast")), match::used_once()));
291
292
    }

293
294
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
295
    {
296
297
298
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
299
        {
300
            dim += ins->get_shape().lens().at(axis);
301
        }
302
303
304
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
305
306
    }

307
308
309
310
311
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

312
    void apply(module& p, const match::matcher_result& r) const
313
    {
314
315
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
316

317
318
319
320
321
322
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
323
324
            auto op = x->get_operator();
            if(not is_valid_op(op))
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
345
346
                auto concat =
                    p.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
                concats.push_back(concat);
            }
            auto y = p.insert_instruction(ins, op, concats);
            return {y};

        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
            p.replace_instruction(ins, args.front());
        else
368
            p.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
369
370
371
    }
};

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
410
        return match::any(match::any_of[match::outputs()](
Shucai Xiao's avatar
Shucai Xiao committed
411
            match::name("slice")(match::any_of[match::outputs()](pointwise(), reduction()))));
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    }

    static std::vector<std::vector<instruction_ref>>
    get_split_groups(const std::vector<instruction_ref>& splits)
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
                // If there is a duplicate bail
                if(contains(group, *it))
                    return {};
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

469
    void apply(module& p, const match::matcher_result& r) const
470
471
472
473
474
475
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
476

477
478
        for(const auto& group : get_split_groups(splits))
        {
Shucai Xiao's avatar
Shucai Xiao committed
479
480
481
482
483
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
484
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
485
            }
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
            instruction_ref c = p.end();
            if(start->inputs().size() == 1)
            {
                c = p.insert_instruction(std::next(ins), op, ins);
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
                    p.move_instructions(data, ins);

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
530
531
                auto concat = p.insert_instruction(
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
                c               = p.insert_instruction(std::next(ins), op, args);
            }
            if(c != p.end())
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
                    for(auto output : i->outputs())
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
550
551
                        auto x =
                            p.insert_instruction(output, make_op("contiguous"), output->inputs());
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                        p.replace_instruction(output, output->get_operator(), x);
                    }

                    p.replace_instruction(i, split->get_operator(), c);
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

570
    void apply(module& p, const match::matcher_result& r) const
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
599
600
601
602
603
604
605
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
606
607
608
609
610
611
612
613
614
615
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
            p.replace_instruction(concat, args.front());
        else
            p.replace_instruction(concat, concat->get_operator(), args);
    }
};

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

    static shape compute_stride_shape(const shape& input, std::size_t n)
    {
        return {input.type(),
658
659
660
661
                {input.lens()[0],
                 input.lens()[1],
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[2] - 1) / n + 1)),
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[3] - 1) / n + 1))},
662
663
664
665
666
667
                {input.strides()[0],
                 input.strides()[1],
                 input.strides()[2] * n,
                 input.strides()[3] * n}};
    }

668
    void apply(module& p, match::matcher_result r) const
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
                    b_input = p.insert_instruction(
698
699
700
701
702
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(b_input->get_shape(), n))}}),
                        b_input);
703
704
705
706
707
708
709
710
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
                    a_input = p.insert_instruction(
711
712
713
714
715
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(a_input->get_shape(), n))}}),
                        a_input);
716
717
718
719
720
721
722
723
                }
                else
                    return;
            }
            else
                return;
        }

724
725
726
727
        auto concat_input =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
        auto concat_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
728
729
730
731
        p.replace_instruction(ins, new_op, concat_input, concat_weights);
    }
};

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

749
    void apply(module& p, const match::matcher_result& r) const
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
777
778
779
780
781
782
783
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
                p.move_instructions(arg, input);
            // TODO: Check if axises match
799
800
            auto concat =
                p.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
801
            auto fused     = p.insert_instruction(std::next(input), op, input, concat);
802
803
804
805
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
806
807
808
809
810
                p.replace_instruction(
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
811
812
813
814
815
816
817
818
819
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

820
821
822
823
824
825
826
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

827
    void apply(module& p, match::matcher_result r) const
828
829
830
831
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

832
        auto recip = p.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
833
834
835

        auto args = ins->inputs();

836
        p.replace_instruction(ins, make_op("mul"), args.front(), recip);
837
838
839
840
841
842
843
844
845
846
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

847
    void apply(module& p, match::matcher_result r) const
848
849
850
851
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

852
        auto neg = p.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
853
854
855

        auto args = ins->inputs();

856
        p.replace_instruction(ins, make_op("add"), args.front(), neg);
857
858
859
    }
};

kahmed10's avatar
kahmed10 committed
860
861
862
863
864
865
866
867
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

868
    void apply(module& p, match::matcher_result r) const
kahmed10's avatar
kahmed10 committed
869
870
871
872
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

873
        p.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
874
875
876
    }
};

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

893
    void apply(module& p, match::matcher_result r) const
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
921
922
923
924
925
926
927
928
929
930
931
932
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
933
934
935
        {
            return;
        }
936
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
937
938

        // calculate reshape output shape
939
940
941
942
943
944
945
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
946
947

        // insert the reshape instruction
948
949
        auto rsp_ins = p.insert_instruction(
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
950
951

        // replace the original reshape with slice
952
953
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
954
955
        {
            p.replace_instruction(
956
957
958
959
960
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
961
            start += vec_dims[i];
962
963
964
965
966
967
968
969
970
971
972
973
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

974
    void apply(module& p, match::matcher_result r) const
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1000
1001
        auto tr =
            p.insert_instruction(std::next(input), make_op("transpose", {{"dims", perm}}), input);
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
        auto axis_new = static_cast<int64_t>(std::distance(perm.begin(), it));

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1015
1016
1017
1018
            p.replace_instruction(
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1019
1020
1021
1022
        }
    }
};

1023
void simplify_algebra::apply(module& p) const
Paul's avatar
Paul committed
1024
{
Paul's avatar
Paul committed
1025
    // Run simplifications multiple times
1026
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1027
    {
Paul's avatar
Paul committed
1028
        match::find_matches(p,
Paul's avatar
Paul committed
1029
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1030
1031
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1032
                            find_add_convs{},
1033
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1034
                            find_mul_conv{},
1035
                            find_mul_slice_conv{},
1036
                            find_mul_add{},
1037
1038
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1039
                            find_rsqrt{},
1040
                            find_concat_op{},
1041
                            find_split_concat{},
1042
1043
1044
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
Paul's avatar
Paul committed
1045
1046
        dead_code_elimination{}.apply(p);
    }
Paul's avatar
Paul committed
1047
}
Paul's avatar
Paul committed
1048

Paul's avatar
Paul committed
1049
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1050
} // namespace migraphx