Commit f77a3a27 authored by lintangsutawika's avatar lintangsutawika
Browse files

Merge branch 'big-refactor' of...

Merge branch 'big-refactor' of https://github.com/EleutherAI/lm-evaluation-harness into mmlu_subgroups
parents 109ed1c7 f8342178
task: logieval
dataset_path: baber/logiqa2
dataset_name: logieval
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
# Instructions + {content}
......
......@@ -4,7 +4,7 @@
group: mgsm_direct
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -4,7 +4,7 @@
group: mgsm_cot_native
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -4,7 +4,7 @@
group: mgsm_cot_native
dataset_path: juletxara/mgsm
dataset_name: null # Overridden by language-specific config.
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
target_delimiter: ""
......
......@@ -37,7 +37,7 @@ Eprint = {arXiv:2206.14858},
#### Groups
- `math_word_problems`
- `greedy_until`
- `generate_until`
#### Tasks
......
......@@ -4,7 +4,7 @@ task: minerva_math_algebra
dataset_path: EleutherAI/hendrycks_math
process_docs: !function utils.process_docs
dataset_name: algebra
output_type: greedy_until
output_type: generate_until
training_split: train
test_split: test
doc_to_text: !function utils.doc_to_text
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_cot_fewshot
dataset_path: cais/mmlu
validation_split: validation
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: Let's think step by step."
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_cot_zeroshot
dataset_path: cais/mmlu
validation_split: validation
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: Let's think step by step."
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
filter_list:
......
......@@ -2,7 +2,7 @@ group: mmlu_flan_n_shot_generative
dataset_path: cais/mmlu
test_split: test
fewshot_split: dev
output_type: greedy_until
output_type: generate_until
doc_to_text: "Q: {{question.strip()}}\n(A) {{choices[0]}} (B) {{choices[1]}} (C) {{choices[2]}} (D) {{choices[3]}}\nA: "
doc_to_target: "{{['(A)', '(B)', '(C)', '(D)'][answer]}}"
generation_kwargs:
......
task: nq_open
dataset_path: nq_open
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
description: "Answer these questions:\n"
......
......@@ -3,7 +3,7 @@ group:
task: polemo2_in
dataset_path: allegro/klej-polemo2-in
dataset_name: klej-polemo2-in
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
test_split: test
......
group: qasper
task: qasper_freeform
dataset_path: qasper
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
process_docs: !function utils.process_docs_freeform
......
......@@ -2,25 +2,44 @@
### Paper
Title: `paper title goes here`
Abstract: `link to paper PDF or arXiv abstract goes here`
Title: `Know What You Don’t Know: Unanswerable Questions for SQuAD`
Abstract: https://arxiv.org/abs/1806.03822
`Short description of paper / benchmark goes here:`
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable
questions written adversarially by crowdworkers to look similar to answerable ones.
To do well on SQuAD2.0, systems must not only answer questions when possible, but
also determine when no answer is supported by the paragraph and abstain from answering.
Homepage: `homepage to the benchmark's website goes here, if applicable`
Homepage: https://rajpurkar.github.io/SQuAD-explorer/
### Citation
```
BibTeX-formatted citation goes here
@misc{rajpurkar2018know,
title={Know What You Don't Know: Unanswerable Questions for SQuAD},
author={Pranav Rajpurkar and Robin Jia and Percy Liang},
year={2018},
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Subtasks
### Groups and Tasks
List or describe tasks defined in this folder, and their names here:
* `task_name`: `1-sentence description of what this particular task does`
* `task_name2`: .....
#### Groups
* `squadv2_complete`: Runs both `squadv2` and `squadv2_noans_loglikelihood`
#### Tasks
* `squadv2`: `Default squadv2 task`
* `squadv2_noans_loglikelihood`: `Additional task to acquire the probability of model predicting there is no answer`
### Checklist
......
dataset_path: squad_v2
training_split: train
validation_split: validation
doc_to_text: "Title: {{title}}\n\nBackground: {{context}}\n\nQuestion: {{question}}\n\n Answer:"
doc_to_target: "{% if answers.text| length > 0 %}{{answers.text}}{% else %}{{['']}}{% endif %}"
target_delimiter: ""
should_decontaminate: true
doc_to_decontamination_query: context
include: _template_yaml
task: squadv2
dataset_path: squad_v2
output_type: greedy_until
training_split: train
validation_split: validation
doc_to_text: "Title: {{title}}\n\nBackground: {{context}}\n\nQuestion: {{question}}\n\n Answer:"
doc_to_target: "{% if answers.text| length > 0 %}{{answers.text}}{% else %}{{['']}}{% endif %}"
target_delimiter: ""
should_decontaminate: true
doc_to_decontamination_query: context
output_type: generate_until
generation_kwargs:
until:
- "\n"
# filter_list:
# - name: remove_whitespace
# filter:
# - function: remove_whitespace
# - function: take_first
metric_list:
- metric: !function utils.exact
aggregation: mean
......
include: default.yaml
include: _template_yaml
task: squadv2_noans_loglikelihood
dataset_path: squad_v2
output_type: loglikelihood
training_split: train
validation_split: validation
doc_to_target: " unanswerable"
metric_list:
- metric: perplexity
......@@ -3,7 +3,7 @@ group:
task: "boolq-seq2seq"
dataset_path: super_glue
dataset_name: boolq
output_type: greedy_until
output_type: generate_until
training_split: train
validation_split: validation
doc_to_text: "{{passage}}\nQuestion: {{question}}?\nAnswer:"
......
......@@ -5,7 +5,7 @@ dataset_path: super_glue
dataset_name: boolq
training_split: train
validation_split: validation
output_type: greedy_until
output_type: generate_until
doc_to_text: "boolq passage: {{passage}} question: {{question}}"
doc_to_target: label
doc_to_choice: ['False', 'True']
......
......@@ -5,7 +5,7 @@ dataset_path: super_glue
dataset_name: cb
training_split: train
validation_split: validation
output_type: greedy_until
output_type: generate_until
doc_to_text: "cb hypothesis: {{hypothesis}} premise: {{premise}}"
doc_to_target: label
doc_to_choice: ['entailment', 'contradiction', 'neutral']
......
......@@ -5,7 +5,7 @@ dataset_path: super_glue
dataset_name: copa
training_split: train
validation_split: validation
output_type: greedy_until
output_type: generate_until
doc_to_text: "copa choice1: {{choice1}} choice2: {{choice2}} premise: {{premise}} question: {{question}}"
doc_to_target: label
doc_to_choice: ['choice1', 'choice2']
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment