Unverified Commit eea16d36 authored by Jess's avatar Jess Committed by GitHub
Browse files

Merge branch 'EleutherAI:main' into main

parents 72f5f4b1 885f48d6
...@@ -307,7 +307,7 @@ To save evaluation results provide an `--output_path`. We also support logging m ...@@ -307,7 +307,7 @@ To save evaluation results provide an `--output_path`. We also support logging m
Additionally, one can provide a directory with `--use_cache` to cache the results of prior runs. This allows you to avoid repeated execution of the same (model, task) pairs for re-scoring. Additionally, one can provide a directory with `--use_cache` to cache the results of prior runs. This allows you to avoid repeated execution of the same (model, task) pairs for re-scoring.
To push results and samples to the Hugging Face Hub, first ensure an access token with write access is set in the `HF_TOKEN` environment variable. Then, use the --hf_hub_log_args flag to specify the organization, repository name, repository visibility, and whether to push results and samples to the Hub. For example: To push results and samples to the Hugging Face Hub, first ensure an access token with write access is set in the `HF_TOKEN` environment variable. Then, use the `--hf_hub_log_args` flag to specify the organization, repository name, repository visibility, and whether to push results and samples to the Hub - [example output](https://huggingface.co/datasets/KonradSzafer/lm-eval-results-demo/tree/main/microsoft__phi-2). For instance:
```bash ```bash
lm_eval --model hf \ lm_eval --model hf \
...@@ -443,6 +443,7 @@ Extras dependencies can be installed via `pip install -e ".[NAME]"` ...@@ -443,6 +443,7 @@ Extras dependencies can be installed via `pip install -e ".[NAME]"`
| sentencepiece | For using the sentencepiece tokenizer | | sentencepiece | For using the sentencepiece tokenizer |
| sparseml | For using NM's SparseML models | | sparseml | For using NM's SparseML models |
| testing | For running library test suite | | testing | For running library test suite |
| unitxt | For IBM's unitxt dataset tasks |
| vllm | For loading models with vLLM | | vllm | For loading models with vLLM |
| zeno | For visualizing results with Zeno | | zeno | For visualizing results with Zeno |
|---------------|---------------------------------------| |---------------|---------------------------------------|
......
...@@ -81,7 +81,7 @@ class EvaluationTracker: ...@@ -81,7 +81,7 @@ class EvaluationTracker:
def __init__( def __init__(
self, self,
output_path: str = "", output_path: str = None,
hub_results_org: str = "", hub_results_org: str = "",
hub_repo_name: str = "", hub_repo_name: str = "",
push_results_to_hub: bool = False, push_results_to_hub: bool = False,
......
...@@ -667,6 +667,8 @@ class HFLM(TemplateLM): ...@@ -667,6 +667,8 @@ class HFLM(TemplateLM):
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :]) max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
else: else:
max_length = self.max_length max_length = self.max_length
max_context_enc = max_length
max_cont_enc = max_length
# if OOM, then halves batch_size and tries again # if OOM, then halves batch_size and tries again
@find_executable_batch_size(starting_batch_size=self.max_batch_size) @find_executable_batch_size(starting_batch_size=self.max_batch_size)
......
# MATH
## Paper
Measuring Mathematical Problem Solving With the MATH Dataset
https://arxiv.org/abs/2103.03874
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations.
NOTE: This task corresponds to the MATH (`hendrycks_math`) implementation at https://github.com/EleutherAI/lm-evaluation-harness/tree/master . For the variant which uses the custom 4-shot prompt in the Minerva paper (https://arxiv.org/abs/2206.14858), and SymPy answer checking as done by Minerva, see `lm_eval/tasks/minerva_math`.
Homepage: https://github.com/hendrycks/math
## Citation
```
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},
journal={NeurIPS},
year={2021}
}
```
### Groups and Tasks
#### Groups
- `hendrycks_math`: the MATH benchmark from Hendrycks et al. 0- or few-shot.
#### Tasks
- `hendrycks_math_algebra`
- `hendrycks_math_counting_and_prob`
- `hendrycks_math_geometry`
- `hendrycks_math_intermediate_algebra`
- `hendrycks_math_num_theory`
- `hendrycks_math_prealgebra`
- `hendrycks_math_precalc`
### Checklist
The checklist is the following:
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
* Answer extraction code is taken from the original MATH benchmark paper's repository.
If other tasks on this dataset are already supported:
* [x] Is the "Main" variant of this task clearly denoted?
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [x] Have you noted which, if any, published evaluation setups are matched by this variant?
group: hendrycks_math
task:
- hendrycks_math_algebra
- hendrycks_math_counting_and_prob
- hendrycks_math_geometry
- hendrycks_math_intermediate_algebra
- hendrycks_math_num_theory
- hendrycks_math_prealgebra
- hendrycks_math_precalc
group:
- math_word_problems
task: hendrycks_math_algebra
dataset_path: EleutherAI/hendrycks_math
process_docs: !function utils.process_docs
dataset_name: algebra
output_type: generate_until
training_split: train
test_split: test
doc_to_text: "Problem: {{problem}}\nAnswer:"
process_results: !function utils.process_results
doc_to_target: "{{answer}}"
generation_kwargs:
until:
- "Problem:"
do_sample: false
temperature: 0
metric_list:
- metric: exact_match
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
dataset_kwargs:
trust_remote_code: true
include: hendrycks_math_algebra.yaml
dataset_name: counting_and_probability
task: hendrycks_math_counting_and_prob
include: hendrycks_math_algebra.yaml
dataset_name: geometry
task: hendrycks_math_geometry
include: hendrycks_math_algebra.yaml
dataset_name: intermediate_algebra
task: hendrycks_math_intermediate_algebra
include: hendrycks_math_algebra.yaml
dataset_name: number_theory
task: hendrycks_math_num_theory
include: hendrycks_math_algebra.yaml
dataset_name: prealgebra
task: hendrycks_math_prealgebra
include: hendrycks_math_algebra.yaml
dataset_name: precalculus
task: hendrycks_math_precalc
from typing import Dict, List
import datasets
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _process_doc(doc: dict) -> dict:
out_doc = {
"problem": doc["problem"],
"solution": doc["solution"],
"answer": remove_boxed(last_boxed_only_string(doc["solution"])),
}
return out_doc
return dataset.map(_process_doc)
def process_results(doc: dict, results: List[str]) -> Dict[str, int]:
retval = 0
indices = [pos for pos, char in enumerate(results[0]) if char == "$"]
if len(indices) <= 1:
answer = results[0]
else:
answer = results[0][indices[0] + 1 : indices[-1]]
if is_equiv(answer, remove_boxed(last_boxed_only_string(doc["solution"]))):
retval = 1
results = {
"exact_match": retval,
}
return results
# string normalization from https://github.com/EleutherAI/lm-evaluation-harness/blob/master/lm_eval/tasks/hendrycks_math.py
def is_equiv(str1, str2, verbose=False):
if str1 is None and str2 is None:
print("WARNING: Both None")
return True
if str1 is None or str2 is None:
return False
try:
ss1 = strip_string(str1)
ss2 = strip_string(str2)
if verbose:
print(ss1, ss2)
return ss1 == ss2
except Exception:
return str1 == str2
def remove_boxed(s):
if "\\boxed " in s:
left = "\\boxed "
assert s[: len(left)] == left
return s[len(left) :]
left = "\\boxed{"
assert s[: len(left)] == left
assert s[-1] == "}"
return s[len(left) : -1]
def last_boxed_only_string(string):
idx = string.rfind("\\boxed")
if "\\boxed " in string:
return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx : right_brace_idx + 1]
return retval
def fix_fracs(string):
substrs = string.split("\\frac")
new_str = substrs[0]
if len(substrs) > 1:
substrs = substrs[1:]
for substr in substrs:
new_str += "\\frac"
if substr[0] == "{":
new_str += substr
else:
try:
assert len(substr) >= 2
except AssertionError:
return string
a = substr[0]
b = substr[1]
if b != "{":
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}{" + b + "}" + post_substr
else:
new_str += "{" + a + "}{" + b + "}"
else:
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}" + b + post_substr
else:
new_str += "{" + a + "}" + b
string = new_str
return string
def fix_a_slash_b(string):
if len(string.split("/")) != 2:
return string
a = string.split("/")[0]
b = string.split("/")[1]
try:
a = int(a)
b = int(b)
assert string == "{}/{}".format(a, b)
new_string = "\\frac{" + str(a) + "}{" + str(b) + "}"
return new_string
except AssertionError:
return string
def remove_right_units(string):
# "\\text{ " only ever occurs (at least in the val set) when describing units
if "\\text{ " in string:
splits = string.split("\\text{ ")
assert len(splits) == 2
return splits[0]
else:
return string
def fix_sqrt(string):
if "\\sqrt" not in string:
return string
splits = string.split("\\sqrt")
new_string = splits[0]
for split in splits[1:]:
if split[0] != "{":
a = split[0]
new_substr = "\\sqrt{" + a + "}" + split[1:]
else:
new_substr = "\\sqrt" + split
new_string += new_substr
return new_string
def strip_string(string):
# linebreaks
string = string.replace("\n", "")
# remove inverse spaces
string = string.replace("\\!", "")
# replace \\ with \
string = string.replace("\\\\", "\\")
# replace tfrac and dfrac with frac
string = string.replace("tfrac", "frac")
string = string.replace("dfrac", "frac")
# remove \left and \right
string = string.replace("\\left", "")
string = string.replace("\\right", "")
# Remove circ (degrees)
string = string.replace("^{\\circ}", "")
string = string.replace("^\\circ", "")
# remove dollar signs
string = string.replace("\\$", "")
# remove units (on the right)
string = remove_right_units(string)
# remove percentage
string = string.replace("\\%", "")
string = string.replace("\%", "") # noqa: W605
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
string = string.replace(" .", " 0.")
string = string.replace("{.", "{0.")
# if empty, return empty string
if len(string) == 0:
return string
if string[0] == ".":
string = "0" + string
# to consider: get rid of e.g. "k = " or "q = " at beginning
if len(string.split("=")) == 2:
if len(string.split("=")[0]) <= 2:
string = string.split("=")[1]
# fix sqrt3 --> sqrt{3}
string = fix_sqrt(string)
# remove spaces
string = string.replace(" ", "")
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
string = fix_fracs(string)
# manually change 0.5 --> \frac{1}{2}
if string == "0.5":
string = "\\frac{1}{2}"
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
string = fix_a_slash_b(string)
return string
...@@ -28,16 +28,11 @@ Eprint = {arXiv:2206.14858}, ...@@ -28,16 +28,11 @@ Eprint = {arXiv:2206.14858},
} }
``` ```
### Groups, Benchmarks and Tasks ### Groups and Tasks
#### Benchmarks
- `minerva_math`
#### Groups #### Groups
- `math_word_problems` - `minerva_math`
- `generate_until`
#### Tasks #### Tasks
......
include: unitxt_tasks.classification.multi_class
task: 20_newsgroups
dataset_name: card=cards.20_newsgroups,template=templates.classification.multi_class.title
# Unitxt
### Paper
Title: `Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI`
Abstract: `https://arxiv.org/abs/2401.14019`
Unitxt is a library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. These components are centralized in the Unitxt-Catalog, thus fostering collaboration and exploration in modern textual data workflows.
The full Unitxt catalog can be viewed in an online explorer. `https://unitxt.readthedocs.io/en/latest/docs/demo.html`
Homepage: https://unitxt.readthedocs.io/en/latest/index.html
### Citation
```
@misc{unitxt,
title={Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI},
author={Elron Bandel and Yotam Perlitz and Elad Venezian and Roni Friedman-Melamed and Ofir Arviv and Matan Orbach and Shachar Don-Yehyia and Dafna Sheinwald and Ariel Gera and Leshem Choshen and Michal Shmueli-Scheuer and Yoav Katz},
year={2024},
eprint={2401.14019},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Groups and Tasks
#### Groups
* `unitxt`: Subset of Unitxt tasks that were not in LM-Eval Harness task catalog, including new types of tasks like multi-label classification, grammatical error correction, named entity extraction.
#### Tasks
The full list of Unitxt tasks currently supported can be seen under `tasks/unitxt` directory.
### Adding tasks
You can add additional tasks from the Unitxt catalog by generating new LM-Eval yaml files for these datasets.
The Unitxt task yaml files are generated via the `generate_yamls.py` script in the `tasks/unitxt` directory.
To add a yaml file for an existing dataset Unitxt which is not yet in LM-Eval:
1. Add the card name to the `unitxt_datasets` file in the `tasks/unitxt` directory.
2. The generate_yaml.py contains the default Unitxt [template](https://unitxt.readthedocs.io/en/latest/docs/adding_template.html) used for each kind of NLP task in the `default_template_per_task` dictionary. If the dataset is of a Unitxt task type, previously not used in LM-Eval, you will need to add a default template for it in the dictionary.
```
default_template_per_task = {
"tasks.classification.multi_label" : "templates.classification.multi_label.title" ,
"tasks.classification.multi_class" : "templates.classification.multi_class.title" ,
"tasks.summarization.abstractive" : "templates.summarization.abstractive.full",
"tasks.regression.two_texts" : "templates.regression.two_texts.simple",
"tasks.qa.with_context.extractive" : "templates.qa.with_context.simple",
"tasks.grammatical_error_correction" : "templates.grammatical_error_correction.simple",
"tasks.span_labeling.extraction" : "templates.span_labeling.extraction.title"
}
```
3. Run `python generate_yaml.py` (this will generate all the datasets listed in the `unitxt_datasets`)
If you want to add a new dataset to the Unitxt catalog, see the Unitxt documentation:
https://unitxt.readthedocs.io/en/latest/docs/adding_dataset.html
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
include: unitxt_tasks.classification.multi_class
task: ag_news
dataset_name: card=cards.ag_news,template=templates.classification.multi_class.title
include: unitxt_tasks.classification.multi_class
task: argument_topic
dataset_name: card=cards.argument_topic,template=templates.classification.multi_class.title
include: unitxt_tasks.span_labeling.extraction
task: atis
dataset_name: card=cards.atis,template=templates.span_labeling.extraction.title
include: unitxt_tasks.classification.multi_class
task: banking77
dataset_name: card=cards.banking77,template=templates.classification.multi_class.title
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment