Commit edbb1a49 authored by Leo Gao's avatar Leo Gao
Browse files

Rename NLP_TASK

parent d53969b5
...@@ -4,7 +4,7 @@ import random ...@@ -4,7 +4,7 @@ import random
from ..base import Dataset from ..base import Dataset
class NLP_TASK(Dataset): class HFNLPTask(Dataset):
NLP_PATH = None NLP_PATH = None
NLP_NAME = None NLP_NAME = None
......
...@@ -3,7 +3,7 @@ import json ...@@ -3,7 +3,7 @@ import json
from scipy.stats import pearsonr, spearmanr from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib from tqdm import auto as tqdm_lib
from . common import NLP_TASK, simple_accuracy_metric, yesno from . common import HFNLPTask, simple_accuracy_metric, yesno
from pathlib import Path from pathlib import Path
from ..base import Dataset from ..base import Dataset
......
...@@ -2,7 +2,7 @@ import numpy as np ...@@ -2,7 +2,7 @@ import numpy as np
from scipy.stats import pearsonr, spearmanr from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib from tqdm import auto as tqdm_lib
from . common import NLP_TASK, simple_accuracy_metric, yesno from . common import HFNLPTask, simple_accuracy_metric, yesno
def get_accuracy_and_f1(preds, golds): def get_accuracy_and_f1(preds, golds):
...@@ -22,7 +22,7 @@ def get_accuracy_and_f1(preds, golds): ...@@ -22,7 +22,7 @@ def get_accuracy_and_f1(preds, golds):
} }
class CoLA(NLP_TASK): class CoLA(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "cola" NLP_NAME = "cola"
...@@ -64,7 +64,7 @@ class CoLA(NLP_TASK): ...@@ -64,7 +64,7 @@ class CoLA(NLP_TASK):
} }
class MNLI(NLP_TASK): class MNLI(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "mnli" NLP_NAME = "mnli"
...@@ -115,7 +115,7 @@ class MNLI(NLP_TASK): ...@@ -115,7 +115,7 @@ class MNLI(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class MRPC(NLP_TASK): class MRPC(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "mrpc" NLP_NAME = "mrpc"
...@@ -153,7 +153,7 @@ class MRPC(NLP_TASK): ...@@ -153,7 +153,7 @@ class MRPC(NLP_TASK):
return get_accuracy_and_f1(preds=preds, golds=golds) return get_accuracy_and_f1(preds=preds, golds=golds)
class RTE(NLP_TASK): class RTE(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "rte" NLP_NAME = "rte"
...@@ -190,7 +190,7 @@ class RTE(NLP_TASK): ...@@ -190,7 +190,7 @@ class RTE(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class QNLI(NLP_TASK): class QNLI(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "qnli" NLP_NAME = "qnli"
...@@ -227,7 +227,7 @@ class QNLI(NLP_TASK): ...@@ -227,7 +227,7 @@ class QNLI(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class QQP(NLP_TASK): class QQP(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "qqp" NLP_NAME = "qqp"
...@@ -265,7 +265,7 @@ class QQP(NLP_TASK): ...@@ -265,7 +265,7 @@ class QQP(NLP_TASK):
return get_accuracy_and_f1(preds=preds, golds=golds) return get_accuracy_and_f1(preds=preds, golds=golds)
class STSB(NLP_TASK): class STSB(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "stsb" NLP_NAME = "stsb"
...@@ -322,7 +322,7 @@ class STSB(NLP_TASK): ...@@ -322,7 +322,7 @@ class STSB(NLP_TASK):
} }
class SST(NLP_TASK): class SST(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "sst2" NLP_NAME = "sst2"
...@@ -359,7 +359,7 @@ class SST(NLP_TASK): ...@@ -359,7 +359,7 @@ class SST(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class WNLI(NLP_TASK): class WNLI(HFNLPTask):
NLP_PATH = "glue" NLP_PATH = "glue"
NLP_NAME = "wnli" NLP_NAME = "wnli"
......
import numpy as np import numpy as np
from tqdm import auto as tqdm_lib from tqdm import auto as tqdm_lib
from . common import NLP_TASK, simple_accuracy_metric, yesno from . common import HFNLPTask, simple_accuracy_metric, yesno
class BoolQ(NLP_TASK): class BoolQ(HFNLPTask):
NLP_PATH = "super_glue" NLP_PATH = "super_glue"
NLP_NAME = "boolq" NLP_NAME = "boolq"
...@@ -36,7 +36,7 @@ class BoolQ(NLP_TASK): ...@@ -36,7 +36,7 @@ class BoolQ(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class CommitmentBank(NLP_TASK): class CommitmentBank(HFNLPTask):
NLP_PATH = "super_glue" NLP_PATH = "super_glue"
NLP_NAME = "cb" NLP_NAME = "cb"
...@@ -79,7 +79,7 @@ class CommitmentBank(NLP_TASK): ...@@ -79,7 +79,7 @@ class CommitmentBank(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class Copa(NLP_TASK): class Copa(HFNLPTask):
NLP_PATH = "super_glue" NLP_PATH = "super_glue"
NLP_NAME = "copa" NLP_NAME = "copa"
...@@ -120,7 +120,7 @@ class Copa(NLP_TASK): ...@@ -120,7 +120,7 @@ class Copa(NLP_TASK):
return choice[0].lower() + choice[1:] return choice[0].lower() + choice[1:]
class WordsInContext(NLP_TASK): class WordsInContext(HFNLPTask):
NLP_PATH = "super_glue" NLP_PATH = "super_glue"
NLP_NAME = "wic" NLP_NAME = "wic"
...@@ -157,7 +157,7 @@ class WordsInContext(NLP_TASK): ...@@ -157,7 +157,7 @@ class WordsInContext(NLP_TASK):
return simple_accuracy_metric(preds=preds, golds=golds) return simple_accuracy_metric(preds=preds, golds=golds)
class WinogradSchemaChallenge(NLP_TASK): class WinogradSchemaChallenge(HFNLPTask):
NLP_PATH = "super_glue" NLP_PATH = "super_glue"
NLP_NAME = "wsc" NLP_NAME = "wsc"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment