Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
e4d852a0
Commit
e4d852a0
authored
Feb 21, 2021
by
Jon Tow
Browse files
Clean up
parent
f4f7618a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
77 deletions
+23
-77
lm_eval/tasks/drop.py
lm_eval/tasks/drop.py
+23
-77
No files found.
lm_eval/tasks/drop.py
View file @
e4d852a0
...
@@ -15,8 +15,7 @@ class DROP(Task):
...
@@ -15,8 +15,7 @@ class DROP(Task):
URL
=
"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
URL
=
"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
def
download
(
self
):
def
download
(
self
):
if
self
.
DATAFOLDER
.
exists
():
if
self
.
DATAFOLDER
.
exists
():
return
return
Path
.
mkdir
(
self
.
DATAFOLDER
)
Path
.
mkdir
(
self
.
DATAFOLDER
)
download_file
(
self
.
URL
,
to
=
str
(
self
.
DATAFOLDER
/
"drop_dataset.zip"
))
download_file
(
self
.
URL
,
to
=
str
(
self
.
DATAFOLDER
/
"drop_dataset.zip"
))
with
ZipFile
(
self
.
DATAFOLDER
/
"drop_dataset.zip"
,
"r"
)
as
zip
:
with
ZipFile
(
self
.
DATAFOLDER
/
"drop_dataset.zip"
,
"r"
)
as
zip
:
...
@@ -39,6 +38,7 @@ class DROP(Task):
...
@@ -39,6 +38,7 @@ class DROP(Task):
for
doc
in
docs
:
for
doc
in
docs
:
for
qa
in
doc
[
"qa_pairs"
]:
for
qa
in
doc
[
"qa_pairs"
]:
yield
{
yield
{
"id"
:
qa
[
"query_id"
],
"passage"
:
doc
[
"passage"
],
"passage"
:
doc
[
"passage"
],
"question"
:
qa
[
"question"
],
"question"
:
qa
[
"question"
],
"answers"
:
self
.
get_answers
(
qa
[
"answer"
]),
"answers"
:
self
.
get_answers
(
qa
[
"answer"
]),
...
@@ -48,7 +48,7 @@ class DROP(Task):
...
@@ -48,7 +48,7 @@ class DROP(Task):
def
get_answers
(
cls
,
answers
):
def
get_answers
(
cls
,
answers
):
# NOTE: We wrap every non-`list` answer into a list for uniformity.
# NOTE: We wrap every non-`list` answer into a list for uniformity.
if
answers
[
"number"
]
!=
""
:
if
answers
[
"number"
]
!=
""
:
return
[
answers
[
"number"
]]
return
[
str
(
answers
[
"number"
]
)
]
if
answers
[
"spans"
]
!=
[]:
if
answers
[
"spans"
]
!=
[]:
return
answers
[
"spans"
]
return
answers
[
"spans"
]
return
[
" "
.
join
([
answers
[
"date"
][
"day"
],
return
[
" "
.
join
([
answers
[
"date"
][
"day"
],
...
@@ -76,16 +76,16 @@ class DROP(Task):
...
@@ -76,16 +76,16 @@ class DROP(Task):
"""Uses RequestFactory to construct Requests and returns an iterable of
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
Requests which will be sent to the LM.
:param doc:
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
language description, as well as the few shot examples, and the question
part of the document for `doc`.
part of the document for `doc`.
"""
"""
conts
=
[]
conts
=
[]
for
_
in
doc
[
"answers"
]:
for
_
in
doc
[
"answers"
]:
conts
.
append
(
rf
.
greedy_until
(
ctx
,
[
"
\n
"
,
"."
]))
conts
.
append
(
rf
.
greedy_until
(
ctx
,
[
"."
]))
return
conts
return
conts
def
process_results
(
self
,
doc
,
results
):
def
process_results
(
self
,
doc
,
results
):
...
@@ -94,16 +94,17 @@ class DROP(Task):
...
@@ -94,16 +94,17 @@ class DROP(Task):
the metric for that one document
the metric for that one document
:param
:param
The document as returned from training_docs, validation_docs, or test_docs.
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
:param results:
The results of the requests created in construct_requests.
The results of the requests created in construct_requests.
"""
"""
gold
,
pred
=
doc
[
"answers"
],
results
golds
,
preds
=
doc
[
"answers"
],
results
print
(
gold
)
exact_match
=
self
.
_exact_match
(
golds
,
preds
)
print
(
pred
)
f1_score
=
self
.
_f1_score
(
golds
,
preds
)
exact_match
=
self
.
_exact_match
(
gold
,
pred
)
return
{
f1_score
=
self
.
_f1_score
(
gold
,
pred
)
"em"
:
exact_match
,
return
{
"em"
:
exact_match
,
"f1"
:
f1_score
}
"f1"
:
f1_score
}
def
_exact_match
(
self
,
golds
,
preds
):
def
_exact_match
(
self
,
golds
,
preds
):
""" Returns the exact match of normalized gold answers and predictions. """
""" Returns the exact match of normalized gold answers and predictions. """
...
@@ -112,13 +113,9 @@ class DROP(Task):
...
@@ -112,13 +113,9 @@ class DROP(Task):
return
int
(
normalized_golds
==
normalized_preds
)
return
int
(
normalized_golds
==
normalized_preds
)
def
_f1_score
(
self
,
golds
,
preds
):
def
_f1_score
(
self
,
golds
,
preds
):
"""Returns the average F1-score over normalized `gold` and `pred`
"""Returns the average F1-score over normalized gold answers and predictions. """
answer lists.
"""
gold_bags
=
self
.
_answer_to_bags
(
golds
)
gold_bags
=
self
.
_answer_to_bags
(
golds
)
print
(
"GOLD BAGS: "
+
str
(
gold_bags
))
pred_bags
=
self
.
_answer_to_bags
(
preds
)
pred_bags
=
self
.
_answer_to_bags
(
preds
)
print
(
"PRED BAGS: "
+
str
(
pred_bags
))
f1_per_bag
=
self
.
_align_bags
(
gold_bags
,
pred_bags
)
f1_per_bag
=
self
.
_align_bags
(
gold_bags
,
pred_bags
)
return
np
.
mean
(
f1_per_bag
)
return
np
.
mean
(
f1_per_bag
)
...
@@ -133,7 +130,6 @@ class DROP(Task):
...
@@ -133,7 +130,6 @@ class DROP(Task):
print
(
self
.
_is_number_match
(
gold_bag
,
pred_bag
))
print
(
self
.
_is_number_match
(
gold_bag
,
pred_bag
))
if
self
.
_is_number_match
(
gold_bag
,
pred_bag
):
if
self
.
_is_number_match
(
gold_bag
,
pred_bag
):
scores
[
gold_index
,
pred_index
]
=
self
.
_bag_f1
(
gold_bag
,
pred_bag
)
scores
[
gold_index
,
pred_index
]
=
self
.
_bag_f1
(
gold_bag
,
pred_bag
)
print
(
scores
)
row_ind
,
col_ind
=
linear_sum_assignment
(
-
scores
)
row_ind
,
col_ind
=
linear_sum_assignment
(
-
scores
)
max_scores
=
np
.
zeros
([
max
(
len
(
gold_bags
),
len
(
pred_bags
))])
max_scores
=
np
.
zeros
([
max
(
len
(
gold_bags
),
len
(
pred_bags
))])
for
row
,
column
in
zip
(
row_ind
,
col_ind
):
for
row
,
column
in
zip
(
row_ind
,
col_ind
):
...
@@ -169,7 +165,10 @@ class DROP(Task):
...
@@ -169,7 +165,10 @@ class DROP(Task):
A dictionary where keys are the names of submetrics and values are
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
functions that aggregate a list of metrics
"""
"""
return
{
"em"
:
mean
,
"f1"
:
mean
}
return
{
"em"
:
mean
,
"f1"
:
mean
}
def
higher_is_better
(
self
):
def
higher_is_better
(
self
):
"""
"""
...
@@ -178,60 +177,7 @@ class DROP(Task):
...
@@ -178,60 +177,7 @@ class DROP(Task):
A dictionary where keys are the names of submetrics and values are
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
whether a higher value of the submetric is better
"""
"""
return
{
"em"
:
True
,
"f1"
:
True
}
return
{
"em"
:
True
,
"f1"
:
True
# Temporary sanity-checks
}
def
main
():
drop
=
DROP
()
def
test_bags
():
multiple_answers
=
[
"Pacific Ocean"
,
"Pacific"
]
ma_bags
=
drop
.
_answer_to_bags
(
multiple_answers
)
print
(
f
"Multiple Choice Answer Bags:
{
multiple_answers
}
=>
{
ma_bags
}
"
)
assert
len
(
ma_bags
)
==
2
number_answer
=
[
"1974"
]
number_bags
=
drop
.
_answer_to_bags
(
number_answer
)
print
(
f
"Number Bags:
{
number_answer
}
=>
{
number_bags
}
"
)
print
()
test_bags
()
def
test_is_number_match
():
gold
=
[
"10 29 1999"
]
pred
=
[
"4 29 1990"
]
gb
=
drop
.
_answer_to_bags
(
gold
)
pb
=
drop
.
_answer_to_bags
(
pred
)
print
(
gb
)
print
(
pb
)
for
g
in
gb
:
for
p
in
pb
:
match
=
drop
.
_is_number_match
(
g
,
p
)
print
(
match
)
print
()
#test_is_number_match()
def
test_exact_match
():
gold
=
[
"Bob Ross"
]
pred
=
[
"Bob Ross"
]
em
=
drop
.
_exact_match
(
gold
,
pred
)
print
(
em
)
#test_exact_match()
def
test_f1_score
():
gold
=
[
"25 to 44"
]
pred
=
[
"25 to 44 or 45 to 64"
]
f1
=
drop
.
_f1_score
(
gold
,
pred
)
print
(
gold
)
print
(
pred
)
print
(
f1
)
gold
=
[
"300"
,
"1992"
]
pred
=
[
"300"
,
"1992"
]
f1
=
drop
.
_f1_score
(
gold
,
pred
)
print
(
f1
)
#test_f1_score()
if
__name__
==
"__main__"
:
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment