Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
d1b6d12d
Commit
d1b6d12d
authored
Feb 12, 2023
by
Niklas Muennighoff
Browse files
v1
parent
3d14707a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
89 additions
and
0 deletions
+89
-0
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+1
-0
lm_eval/tasks/babi.py
lm_eval/tasks/babi.py
+88
-0
No files found.
lm_eval/tasks/__init__.py
View file @
d1b6d12d
...
...
@@ -4,6 +4,7 @@ from typing import List, Union
import
sacrebleu
import
lm_eval.base
from
.
import
babi
from
.
import
superglue
from
.
import
glue
from
.
import
arc
...
...
lm_eval/tasks/babi.py
0 → 100644
View file @
d1b6d12d
"""
Much copied from https://github.com/stanford-crfm/helm/blob/0eaaa62a2263ddb94e9850ee629423b010f57e4a/src/helm/benchmark/scenarios/babi_qa_scenario.py
"""
import
numpy
as
np
from
collections
import
defaultdict
from
lm_eval.base
import
rf
,
Task
from
lm_eval.metrics
import
mean
_CITATION
=
"""
"""
class
Babi
(
Task
):
VERSION
=
0
DATASET_PATH
=
"Muennighoff/babi"
DATASET_NAME
=
None
def
has_training_docs
(
self
):
return
False
def
has_validation_docs
(
self
):
return
False
def
has_test_docs
(
self
):
return
True
def
training_docs
(
self
):
if
self
.
has_training_docs
():
return
self
.
dataset
[
"train"
]
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"valid"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"train"
]
def
doc_to_text
(
self
,
doc
):
return
(
doc
[
'passage'
]
+
doc
[
'question'
]
)
def
should_decontaminate
(
self
):
return
False
## TODO Necessary?
def
doc_to_decontamination_query
(
self
,
doc
):
return
doc
[
'passage'
]
+
doc
[
'question'
]
def
doc_to_target
(
self
,
doc
):
return
" "
+
doc
[
'answer'
]
def
construct_requests
(
self
,
doc
,
ctx
):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
return
rf
.
greedy_until
(
ctx
,
[
"
\n
"
])
def
process_results
(
self
,
doc
,
results
):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
gold
=
doc
[
"answer"
]
pred
=
gold
==
results
return
{
"em"
:
pred
}
def
aggregation
(
self
):
return
{
"em"
:
mean
,
}
def
higher_is_better
(
self
):
return
{
"em"
:
True
,
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment