Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
c7572ba6
Unverified
Commit
c7572ba6
authored
Jun 15, 2023
by
Hailey Schoelkopf
Committed by
GitHub
Jun 15, 2023
Browse files
Delete triviaqa.py
parent
025fa6e8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
126 deletions
+0
-126
lm_eval/tasks/triviaqa.py
lm_eval/tasks/triviaqa.py
+0
-126
No files found.
lm_eval/tasks/triviaqa.py
deleted
100644 → 0
View file @
025fa6e8
"""
TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension
https://arxiv.org/pdf/1705.03551.pdf
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
Homepage: https://nlp.cs.washington.edu/triviaqa/
"""
import
inspect
# import lm_eval.datasets.triviaqa.triviaqa
import
string
from
lm_eval.api.task
import
Task
from
lm_eval.api.instance
import
Instance
from
lm_eval.api.registry
import
register_task
from
lm_eval.api.metrics
import
mean
_CITATION
=
"""
@InProceedings{JoshiTriviaQA2017,
author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
month = {July},
year = {2017},
address = {Vancouver, Canada},
publisher = {Association for Computational Linguistics},
}
"""
@
register_task
(
"triviaqa"
)
class
TriviaQA
(
Task
):
VERSION
=
1
DATASET_PATH
=
"trivia_qa"
# inspect.getfile(lm_eval.datasets.triviaqa.triviaqa)
DATASET_NAME
=
"unfiltered.nocontext"
OUTPUT_TYPE
=
"greedy_until"
def
has_training_docs
(
self
):
return
True
def
has_validation_docs
(
self
):
return
True
def
has_test_docs
(
self
):
return
False
def
training_docs
(
self
):
return
self
.
dataset
[
"train"
]
def
validation_docs
(
self
):
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
raise
NotImplementedError
()
def
doc_to_text
(
self
,
doc
):
return
f
"Q:
{
doc
[
'question'
]
}
\n
A:"
def
should_decontaminate
(
self
):
return
True
def
doc_to_decontamination_query
(
self
,
doc
):
return
doc
[
"question"
]
def
doc_to_target
(
self
,
doc
):
return
" "
+
doc
[
"answer"
][
"value"
]
def
_remove_prefixes
(
self
,
aliases
):
# Optimization: Remove any alias that has a strict prefix elsewhere in the list
# we can do this because if the prefix is acceptable by isgreedy, we can stop looking
aliases
.
sort
()
ret
=
[
aliases
[
0
]]
for
alias
in
aliases
[
1
:]:
if
not
alias
.
startswith
(
ret
[
-
1
]):
ret
.
append
(
alias
)
return
ret
def
construct_requests
(
self
,
doc
,
ctx
,
**
kwargs
):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation
=
Instance
(
request_type
=
self
.
OUTPUT_TYPE
,
doc
=
doc
,
arguments
=
(
ctx
,
{
"until"
:
[
"
\n
"
,
"."
,
","
],
"do_sample"
:
False
,
},
),
idx
=
0
,
**
kwargs
,
)
return
continuation
def
process_results
(
self
,
doc
,
results
):
continuation
=
(
results
[
0
]
.
strip
()
.
lower
()
.
translate
(
str
.
maketrans
(
""
,
""
,
string
.
punctuation
))
)
list_of_candidates
=
[
alias
.
lower
().
translate
(
str
.
maketrans
(
""
,
""
,
string
.
punctuation
))
for
alias
in
self
.
_remove_prefixes
(
doc
[
"answer"
][
"aliases"
])
]
return
{
"em"
:
float
(
continuation
in
list_of_candidates
)}
def
aggregation
(
self
):
return
{
"em"
:
mean
,
}
def
higher_is_better
(
self
):
return
{
"em"
:
True
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment