Unverified Commit c6b094e0 authored by Leo Gao's avatar Leo Gao Committed by GitHub
Browse files

Merge pull request #138 from jon-tow/winograd-fixes

Fix few-shot contexts for `Winograd Schema Challenge`-based tasks
parents 7614a8f3 1a159d6b
...@@ -13,6 +13,8 @@ class Winogrande(HFTask): ...@@ -13,6 +13,8 @@ class Winogrande(HFTask):
DATASET_PATH = "winogrande" DATASET_PATH = "winogrande"
DATASET_NAME = "winogrande_xl" DATASET_NAME = "winogrande_xl"
answer_to_num = {'1': 0, '2': 1}
def has_training_docs(self): def has_training_docs(self):
return True return True
...@@ -20,54 +22,59 @@ class Winogrande(HFTask): ...@@ -20,54 +22,59 @@ class Winogrande(HFTask):
return True return True
def has_test_docs(self): def has_test_docs(self):
return True return False
def doc_to_text(self, doc):
return self.partial_context(doc, doc["option" + doc["answer"]])
def fewshot_description(self): def fewshot_description(self):
# TODO: redo description # TODO: redo description
return "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in." return "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in."
@classmethod @classmethod
def partial_context(cls, doc): def partial_context(cls, doc, option):
# Substitute the pronoun in the sentence with each candidate choice # Substitute the pronoun in the sentence with the specified option
# and ignore everything after. # and ignore everything after.
pronoun_loc = doc["sentence"].index("_") pronoun_loc = doc["sentence"].index("_")
context1 = doc["sentence"][:pronoun_loc] + doc["option1"] return doc["sentence"][:pronoun_loc] + option
context2 = doc["sentence"][:pronoun_loc] + doc["option2"]
return context1, context2 def doc_to_target(self, doc):
return self.partial_target(doc)
@classmethod @classmethod
def partial_target(cls, doc): def partial_target(cls, doc):
# The target is everything after the document specified pronoun. # The target is everything after the document specified pronoun.
pronoun_loc = doc["sentence"].index("_") + 1 pronoun_loc = doc["sentence"].index("_") + 1
return doc["sentence"][pronoun_loc:].strip() return " " + doc["sentence"][pronoun_loc:].strip()
def doc_to_text(self, doc):
context1, context2 = self.partial_context(doc)
return context1 + '\n' + context2 + '\n'
def doc_to_target(self, doc):
return self.partial_target(doc)
def construct_requests(self, doc, ctx): def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of """Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM. Requests which will be sent to the LM.
:param doc: :param doc:
The document as returned from training_docs, validation_docs, or test_docs. The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str :param ctx: str
The context string, generated by fewshot_context. This includes the natural The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question language description, as well as the few shot examples, and the question
part of the document for `doc`. part of the document for `doc`.
""" """
target = self.partial_target(doc) target = self.partial_target(doc)
context1, context2 = self.partial_context(doc) right_ctx, wrong_ctx = ctx, self._wrong_context(doc, ctx)
ll_context1, _ = rf.loglikelihood(context1, " " + target) ll_right_ctx, _ = rf.loglikelihood(right_ctx, target)
ll_context2, _ = rf.loglikelihood(context2, " " + target) ll_wrong_ctx, _ = rf.loglikelihood(wrong_ctx, target)
return ll_context1, ll_context2 return ll_right_ctx, ll_wrong_ctx
def _wrong_context(self, doc, ctx):
wrong_answer = f"{int(not self.answer_to_num[doc['answer']]) + 1}"
wrong_option = doc["option" + wrong_answer]
wrong_ctx = self.partial_context(doc, wrong_option)
ctx = ctx.split("\n\n") # Each fewshot context is on its own new line.
ctx.pop() # Remove the correct context.
return "\n\n".join([*ctx, wrong_ctx]) if ctx else wrong_ctx
def process_results(self, doc, results): def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a """Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of dict where keys are the names of submetrics and values are the values of
the metric for that one document the metric for that one document
:param doc: :param doc:
...@@ -75,15 +82,14 @@ class Winogrande(HFTask): ...@@ -75,15 +82,14 @@ class Winogrande(HFTask):
:param results: :param results:
The results of the requests created in construct_requests. The results of the requests created in construct_requests.
""" """
answer = int(doc["answer"]) - 1 # `- 1` b/c doc["answer"] ∈ {'1', '2'}
return { return {
"acc": np.argmax(results) == answer "acc": np.argmax(results) == self.answer_to_num[doc["answer"]]
} }
def aggregation(self): def aggregation(self):
""" """
:returns: {str: [float] -> float} :returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics functions that aggregate a list of metrics
""" """
return { return {
...@@ -93,7 +99,7 @@ class Winogrande(HFTask): ...@@ -93,7 +99,7 @@ class Winogrande(HFTask):
def higher_is_better(self): def higher_is_better(self):
""" """
:returns: {str: bool} :returns: {str: bool}
A dictionary where keys are the names of submetrics and values are A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better whether a higher value of the submetric is better
""" """
return { return {
......
...@@ -26,14 +26,14 @@ class WinogradSchemaChallenge273(HFTask): ...@@ -26,14 +26,14 @@ class WinogradSchemaChallenge273(HFTask):
data = [] data = []
for doc in self.data["test"]: for doc in self.data["test"]:
doc["text"] = doc["text"].replace(" ", " ") doc["text"] = doc["text"].replace(" ", " ")
doc["options"][0] = self.__normalize_option(doc["options"][0], doc) doc["options"][0] = self.__normalize_option(doc, doc["options"][0])
doc["options"][1] = self.__normalize_option(doc["options"][1], doc) doc["options"][1] = self.__normalize_option(doc, doc["options"][1])
data.append(doc) data.append(doc)
return {"test": data} return {"test": data}
def __normalize_option(self, option, doc): def __normalize_option(self, doc, option):
# Append `'s` to possessive determiner based options. # Append `'s` to possessive determiner based options.
if doc["pronoun"].lower() in ["my", "his", "her", "our", "their"]: if doc["pronoun"].lower() in ["my", "his", "her", "our", "their"]:
option += "'s" option += "'s"
# Appropriately lowercase the pronoun in the option. # Appropriately lowercase the pronoun in the option.
pronoun = option.split()[0] pronoun = option.split()[0]
...@@ -51,56 +51,61 @@ class WinogradSchemaChallenge273(HFTask): ...@@ -51,56 +51,61 @@ class WinogradSchemaChallenge273(HFTask):
def has_test_docs(self): def has_test_docs(self):
return True return True
def fewshot_description(self):
# TODO: redo description
return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."
def fewshot_examples(self, k): def fewshot_examples(self, k):
# NOTE: `super().fewshot_examples` samples from training docs which are # NOTE: `super().fewshot_examples` samples from training docs which are
# not available for this test-set-only dataset. # not available for this test-set-only dataset.
return random.sample(list(self.test_docs()), k) return random.sample(list(self.test_docs()), k)
def fewshot_description(self): def doc_to_text(self, doc):
# TODO: redo description return self.partial_context(doc, doc["options"][doc["label"]])
return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."
@classmethod @classmethod
def partial_context(cls, doc): def partial_context(cls, doc, option):
# Substitute the pronoun in the original text with each candidate # Substitute the pronoun in the original text with the specified
# choice and ignore everything after. # option and ignore everything after.
context1 = doc["text"][:doc["pronoun_loc"]] + doc["options"][0] return doc["text"][:doc["pronoun_loc"]] + option
context2 = doc["text"][:doc["pronoun_loc"]] + doc["options"][1]
return context1, context2 def doc_to_target(self, doc):
return self.partial_target(doc)
@classmethod @classmethod
def partial_target(cls, doc): def partial_target(cls, doc):
# The target is everything after the document specified pronoun. # The target is everything after the document specified pronoun.
start_index = doc["pronoun_loc"] + len(doc["pronoun"]) start_index = doc["pronoun_loc"] + len(doc["pronoun"])
return doc["text"][start_index:].strip() return " " + doc["text"][start_index:].strip()
def doc_to_text(self, doc):
context1, context2 = self.partial_context(doc)
return context1 + '\n' + context2 + '\n'
def doc_to_target(self, doc):
return self.partial_target(doc)
def construct_requests(self, doc, ctx): def construct_requests(self, doc, ctx):
""" Uses RequestFactory to construct Requests and returns an iterable of """Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM. Requests which will be sent to the LM.
:param doc: :param doc:
The document as returned from training_docs, validation_docs, or test_docs. The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str :param ctx: str
The context string, generated by fewshot_context. This includes the natural The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question language description, as well as the few shot examples, and the question
part of the document for `doc`. part of the document for `doc`.
""" """
target = self.partial_target(doc) target = self.partial_target(doc)
context1, context2 = self.partial_context(doc) right_ctx, wrong_ctx = ctx, self._wrong_context(doc, ctx)
ll_context1, _ = rf.loglikelihood(context1, " " + target) ll_right_ctx, _ = rf.loglikelihood(right_ctx, target)
ll_context2, _ = rf.loglikelihood(context2, " " + target) ll_wrong_ctx, _ = rf.loglikelihood(wrong_ctx, target)
return ll_context1, ll_context2 return ll_right_ctx, ll_wrong_ctx
def _wrong_context(self, doc, ctx):
wrong_answer = int(not doc["label"])
wrong_option = doc["options"][wrong_answer]
wrong_ctx = self.partial_context(doc, wrong_option)
ctx = ctx.split("\n\n") # Each fewshot context is on its own new line.
ctx.pop() # Remove the correct context.
return "\n\n".join([*ctx, wrong_ctx]) if ctx else wrong_ctx
def process_results(self, doc, results): def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a """Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of dict where keys are the names of submetrics and values are the values of
the metric for that one document the metric for that one document
:param doc: :param doc:
...@@ -115,7 +120,7 @@ class WinogradSchemaChallenge273(HFTask): ...@@ -115,7 +120,7 @@ class WinogradSchemaChallenge273(HFTask):
def aggregation(self): def aggregation(self):
""" """
:returns: {str: [float] -> float} :returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics functions that aggregate a list of metrics
""" """
return { return {
...@@ -125,7 +130,7 @@ class WinogradSchemaChallenge273(HFTask): ...@@ -125,7 +130,7 @@ class WinogradSchemaChallenge273(HFTask):
def higher_is_better(self): def higher_is_better(self):
""" """
:returns: {str: bool} :returns: {str: bool}
A dictionary where keys are the names of submetrics and values are A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better whether a higher value of the submetric is better
""" """
return { return {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment