Unverified Commit c5ed8cdc authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge pull request #501 from EleutherAI/update-config

Update config
parents f6b76f5d c17e3659
......@@ -3,3 +3,5 @@ env
data/
lm_cache
.idea
*.egg-info/
......@@ -12,6 +12,7 @@ repos:
- id: check-merge-conflict
- id: check-symlinks
- id: check-yaml
args: ['--unsafe']
- id: destroyed-symlinks
- id: detect-private-key
- id: end-of-file-fixer
......
......@@ -45,7 +45,7 @@ python main.py \
--device cuda:0
```
Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partialy trained checkpoints:
Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partially trained checkpoints:
```bash
python main.py \
......@@ -78,7 +78,7 @@ python main.py \
--tasks lambada_openai,hellaswag
```
While this functionality is only officially mantained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as [goose.ai](goose.ai) with minor modification. We also have an implementation for the [TextSynth](https://textsynth.com/index.html) API, using `--model textsynth`.
While this functionality is only officially maintained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as [goose.ai](goose.ai) with minor modification. We also have an implementation for the [TextSynth](https://textsynth.com/index.html) API, using `--model textsynth`.
To verify the data integrity of the tasks you're performing in addition to running the tasks themselves, you can use the `--check_integrity` flag:
......@@ -116,7 +116,7 @@ When reporting eval harness results, please also report the version of each task
## Test Set Decontamination
To address concerns about train / test contamination, we provide utilities for comparing results on a benchmark using only the data points nto found in the model trainign set. Unfortunately, outside of models trained on the Pile ans C4, its very rare that people who train models disclose the contents of the training data. However this utility can be useful to evaluate models you have trained on private data, provided you are willing to pre-compute the necessary indices. We provide computed indices for 13-gram exact match deduplication against the Pile, and plan to add additional precomputed dataset indices in the future (including C4 and min-hash LSH deduplication).
To address concerns about train / test contamination, we provide utilities for comparing results on a benchmark using only the data points nto found in the model trainign set. Unfortunately, outside of models trained on the Pile and C4, its very rare that people who train models disclose the contents of the training data. However this utility can be useful to evaluate models you have trained on private data, provided you are willing to pre-compute the necessary indices. We provide computed indices for 13-gram exact match deduplication against the Pile, and plan to add additional precomputed dataset indices in the future (including C4 and min-hash LSH deduplication).
For details on text decontamination, see the [decontamination guide](./docs/decontamination.md).
......
from . import metrics
METRIC_REGISTRY = {
"matthews_corrcoef": metrics.matthews_corrcoef,
"f1_score": metrics.f1_score,
"perplexity": metrics.perplexity,
"bleu": metrics.bleu,
"chrf": metrics.chrf,
"ter": metrics.ter,
}
AGGREGATION_REGISTRY = {
"mean": metrics.mean,
"median": metrics.median,
"perplexity": metrics.perplexity,
}
HIGHER_IS_BETTER_REGISTRY = {
"matthews_corrcoef": True,
"f1_score": True,
"perplexity": False,
"bleu": True,
"chrf": True,
"ter": False,
"acc": True,
"acc_norm": True,
"acc_mutual_info": True,
"word_perplexity": False,
"byte_perplexity": False,
"bits_per_byte": False,
}
\ No newline at end of file
......@@ -3,6 +3,7 @@ from typing import List
from lm_eval.api.instance import Instance
class Filter:
"""
Filter classes operate on a per-task level.
......@@ -26,6 +27,7 @@ class Filter:
"""
return resps
@dataclass
class FilterEnsemble:
"""
......@@ -34,21 +36,23 @@ class FilterEnsemble:
`task.apply_filters` should use a list of FilterEnsemble classes that it stores, to apply each
pipeline separately.
"""
name: str
filters: List[Filter]
def apply(self, instances: List[Instance]):
resps = [inst.resps for inst in instances] # operate just on the model responses
resps = [
inst.resps for inst in instances
] # operate just on the model responses
for f in self.filters:
# apply filters in sequence
out = f.apply(resps)
resps = out # TODO: handle the case where a filter returns multiple "buckets"
resps = (
out # TODO: handle the case where a filter returns multiple "buckets"
)
# add the end results after filtering to filtered_requests of their respective source instances.
# has key `self.name`: each FilterEnsemble applied in a given run should use a different name.
for inst, resp in zip(instances, resps):
inst.filtered_resps[self.name] = resp
from dataclasses import dataclass, field
from typing import Literal, Tuple
@dataclass
class Instance:
request_type: str = Literal["loglikelihood", "loglikelihood_rolling", "greedy_until"]
request_type: str = Literal[
"loglikelihood", "loglikelihood_rolling", "greedy_until"
]
doc: dict = None
arguments: tuple = None
idx: int = None
......@@ -25,4 +28,6 @@ class Instance:
"""
Returns (string,) where `string` is the string to calculate loglikelihood over
"""
return self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
return (
self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
)
......@@ -10,6 +10,7 @@ import evaluate
AGGREGATION_REGISTRY = {}
METRIC_REGISTRY = {
"acc": None,
"acc_norm": None,
......@@ -18,6 +19,21 @@ METRIC_REGISTRY = {
"byte_perplexity": None,
}
HIGHER_IS_BETTER_REGISTRY = {
"matthews_corrcoef": True,
"f1_score": True,
"perplexity": False,
"bleu": True,
"chrf": True,
"ter": False,
"acc": True,
"acc_norm": True,
"acc_mutual_info": True,
"word_perplexity": False,
"byte_perplexity": False,
"bits_per_byte": False,
}
def register_metric(name):
# TODO: do we want to enforce a certain interface to registered metrics?
......@@ -38,12 +54,14 @@ def get_metric(name):
return METRIC_REGISTRY[name]
except KeyError:
# TODO: change this print to logging?
print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
print(
f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library..."
)
try:
metric_object = evaluate.load(name)
return metric_object.compute
except:
except Exception:
raise Warning(
"{} not found in the evaluate library!".format(name),
"Please check https://huggingface.co/evaluate-metric",
......
......@@ -6,14 +6,15 @@ from lm_eval import utils
MODEL_REGISTRY = {}
def register_model(*names):
# either pass a list or a single alias.
# function receives them as a tuple of strings
def decorate(cls):
for name in names:
assert (
issubclass(cls, LM)
assert issubclass(
cls, LM
), f"Model '{name}' ({cls.__name__}) must extend LM class"
assert (
......
import os
task_registry = {}
group_registry = {}
task2func_index = {}
func2task_index = {}
def register_task(name):
def wrapper(func):
task_registry[name] = func
func2task_index[func.__name__] = name
task2func_index[name] = func.__name__
return func
return wrapper
def register_group(name):
def wrapper(func):
func_name = func2task_index[func.__name__]
if name in group_registry:
group_registry[name].append(func_name)
else:
group_registry[name] = [func_name]
return func
return wrapper
class Sampler:
def __init__(self, docs, task, fewshot_indices=None, rnd=None):
self.rnd = rnd
......@@ -16,11 +13,14 @@ class Sampler:
if fewshot_indices: # subset few-shot docs from
self.docs = self.docs.select(fewshot_indices)
def get_context(self, doc, num_fewshot):
# draw an extra fewshot sample if using same split as evaluting on
n_samples = num_fewshot + 1 if self.config.fewshot_split == self.config.test_split else num_fewshot
# draw an extra fewshot sample if using same split as evaluating on
n_samples = (
num_fewshot + 1
if self.config.fewshot_split == self.config.test_split
else num_fewshot
)
# draw `n_samples` docs from fewshot_docs
fewshotex = self.sample(n_samples)
......@@ -51,7 +51,6 @@ class Sampler:
class BalancedSampler(Sampler):
def sample(self, n):
"""
TODO: this should return approximately class-balanced samples from our fewshot examples.
......@@ -60,12 +59,10 @@ class BalancedSampler(Sampler):
pass
class ManualSampler(Sampler):
class ManualSampler(Sampler):
def sample(self, n):
"""
"""
""" """
pass
......
This diff is collapsed.
import collections
import random
import itertools
import collections
import numpy as np
import random
import lm_eval.api
import lm_eval.api.metrics
import lm_eval.models
import lm_eval.tasks
import lm_eval.api
from lm_eval.utils import positional_deprecated, run_task_tests, make_table, get_git_commit_hash
import lm_eval.models
from lm_eval.utils import (
positional_deprecated,
run_task_tests,
make_table,
get_git_commit_hash,
)
from lm_eval.logger import eval_logger
@positional_deprecated
......@@ -65,7 +76,7 @@ def simple_evaluate(
assert isinstance(model, lm_eval.api.model.LM)
lm = model
task_dict = lm_eval.api.task.get_task_dict(tasks, num_fewshot=num_fewshot)
task_dict = lm_eval.tasks.get_task_dict(tasks, num_fewshot=num_fewshot)
if check_integrity:
run_task_tests(task_list=tasks)
......@@ -73,7 +84,6 @@ def simple_evaluate(
results = evaluate(
lm=lm,
task_dict=task_dict,
num_fewshot=num_fewshot,
limit=limit,
bootstrap_iters=bootstrap_iters,
decontamination_ngrams_path=decontamination_ngrams_path,
......@@ -102,7 +112,6 @@ decontaminate_suffix = "_decontaminate"
def evaluate(
lm,
task_dict,
num_fewshot=0,
limit=None,
bootstrap_iters=100000,
decontamination_ngrams_path=None,
......@@ -123,15 +132,15 @@ def evaluate(
Dictionary of results
"""
decontaminate = decontamination_ngrams_path is not None
# decontaminate = decontamination_ngrams_path is not None
results = collections.defaultdict(dict)
versions = collections.defaultdict(dict)
requests = collections.defaultdict(list)
requests_origin = collections.defaultdict(list)
# requests_origin = collections.defaultdict(list)
docs = {}
# docs = {}
# get lists of each type of request
for task_name, task in task_dict.items():
......@@ -146,13 +155,17 @@ def evaluate(
# for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
task.build_all_requests(limit=limit)
# aggregate Instances by LM method requested to get output.
reqtype = "loglikelihood" if task.OUTPUT_TYPE == "multiple_choice" else task.OUTPUT_TYPE #TODO: this is hacky, fix in task.py
reqtype = (
"loglikelihood"
if task.OUTPUT_TYPE == "multiple_choice"
else task.OUTPUT_TYPE
) # TODO: this is hacky, fix in task.py
requests[reqtype].extend(task.instances)
### Run LM on inputs, get all outputs ###
# execute each type of request
for reqtype, reqs in requests.items():
print("Running", reqtype, "requests")
eval_logger.info("Running {} requests".format(reqtype))
# create `K` copies of each request `req` based off `K = req.repeats`
cloned_reqs = []
for req in reqs:
......@@ -170,7 +183,6 @@ def evaluate(
for task_name, task in task_dict.items():
task.apply_filters()
### Collect values of metrics on all datapoints ###
# TODO: make metric configurable, add metric registry
vals = collections.defaultdict(list)
......@@ -180,21 +192,27 @@ def evaluate(
# calculate values for each filter setup (TODO: make getting list of keys cleaner)
# TODO: make it possible to use a different metric per key
for key in task.instances[0].filtered_resps.keys():
for doc_id, doc in enumerate(itertools.islice(task.test_docs(), 0, limit) if task.has_test_docs() else task.validation_docs()):
for doc_id, doc in enumerate(
itertools.islice(task.test_docs(), 0, limit)
if task.has_test_docs()
else task.validation_docs()
):
# subset instances to only this document id ; sort by idx
requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
requests.sort(key=lambda x: x.idx)
metrics = task.process_results(doc, [req.filtered_resps[key] for req in requests])
metrics = task.process_results(
doc, [req.filtered_resps[key] for req in requests]
)
for metric, value in metrics.items():
vals[(task_name, key, metric)].append(value)
### Aggregate results over all datapoints ###
# aggregate results ; run bootstrap CIs
for (task_name, key, metric), items in vals.items():
task = task_dict[task_name]
results[task_name][metric + " - filter=" + key] = task.aggregation()[metric](items)
results[task_name][metric + " - filter=" + key] = task.aggregation()[metric](
items
)
# hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
# so we run them less iterations. still looking for a cleaner way to do this
......
......@@ -9,7 +9,7 @@ FILTER_REGISTRY = {
# TODO: implement this filter. either it should take in an arbitrary "scoring"/reward function
# that takes an input and returns a scalar and then should select the max reward,
# or should implement different filters for different ways of handling a reward model's inference.
#"arg_max": selection.ArgMaxFilter,
# "arg_max": selection.ArgMaxFilter,
}
......@@ -17,16 +17,19 @@ def get_filter(filter_name):
return FILTER_REGISTRY[filter_name]
def build_filter_ensemble(name, components):
def build_filter_ensemble(filter_name, components):
"""
Create a filtering pipeline.
"""
filters = []
for step in components:
for (function, kwargs) in components:
if kwargs is None:
f = get_filter(function)()
else:
# create a filter given its name in the registry
f = get_filter(step)() # TODO: pass kwargs to filters properly
f = get_filter(function)(**kwargs) # TODO: pass kwargs to filters properly
# add the filter as a pipeline step
filters.append(f)
return FilterEnsemble(name=name, filters=filters)
return FilterEnsemble(name=filter_name, filters=filters)
......@@ -4,19 +4,15 @@ from lm_eval.api.filter import Filter
class RegexFilter(Filter):
"""
""" """
"""
def __init__(self, regex=r"#### (\-?[0-9\.\,]+)", fallback="[invalid]"):
def __init__(self, regex_pattern=r"#### (\-?[0-9\.\,]+)", fallback="[invalid]"):
"""
pass a string `regex` to run `re.compile(r"regex")` on.
`fallback` defines the output returned if no matches for the regex are located.
"""
self.regex_pattern = regex
self.regex = re.compile(regex)
self.regex_pattern = regex_pattern
self.regex = re.compile(regex_pattern)
self.fallback = fallback
def apply(self, resps):
......@@ -30,7 +26,7 @@ class RegexFilter(Filter):
match = self.regex.search(resp)
if match:
match = match.group(1).strip()
match_str.replace(",", "")
match.replace(",", "")
# TODO: should we assume any other filtering is performed?
else:
match = self.fallback
......
from lm_eval.api.filter import Filter
class TakeFirstFilter:
class TakeFirstFilter:
def __init__(self):
"""
Can define custom behavior here, if an individual instantiation of a Filter class should have state.
......
import logging
logging.basicConfig(
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.INFO,
)
eval_logger = logging.getLogger("lm-eval")
......@@ -6,6 +6,7 @@ from tqdm import tqdm
import torch.nn.functional as F
from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM, register_model
......@@ -31,10 +32,10 @@ class HFLM(LM):
if device not in ["cuda", "cpu"]:
device = int(device)
self._device = torch.device(device)
print(f"Using device '{device}'")
eval_logger.info(f"Using device '{device}'")
else:
print("Device not specified")
print(f"Cuda Available? {torch.cuda.is_available()}")
eval_logger.warning("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
......@@ -110,7 +111,11 @@ class HFLM(LM):
def _model_generate(self, context, max_length, eos_token_id):
return self.gpt2.generate(
context, max_length=max_length, pad_token_id=eos_token_id, eos_token_id=eos_token_id, do_sample=False
context,
max_length=max_length,
pad_token_id=eos_token_id,
eos_token_id=eos_token_id,
do_sample=False,
)
def loglikelihood(self, requests):
......
import os
import numpy as np
import time
import transformers
from lm_eval.api.model import LM, register_model
from lm_eval import utils
import numpy as np
from tqdm import tqdm
import time
from lm_eval import utils
from lm_eval.api.model import LM, register_model
def get_result(response, ctxlen):
......
from lm_eval.logger import eval_logger
from promptsource.templates import DatasetTemplates
# TODO: decide whether we want jinja2 or f-string prompts. would it be cursed to support both?
# Prompt library.
# Stores prompts in a dictionary indexed by 2 levels:
......@@ -6,17 +9,37 @@
PROMPT_REGISTRY = {
"qa-basic": {
"question-newline-answer": "Question: {{question}}\nAnswer:",
"q-newline-a": "Q: {question}\nA:"
"q-newline-a": "Q: {{question}}\nA:",
},
}
def get_prompt(prompt_id: str):
def get_prompt(prompt_id: str, dataset_name=None, subset_name=None):
# unpack prompt name
try:
category_name, prompt_name = prompt_id.split(":")
except:
eval_logger.info(f"Loading prompt from {category_name}")
if category_name == "promptsource":
try:
# prompts = DatasetTemplates(dataset_name, dataset_path)
if subset_name is None:
prompts = DatasetTemplates(dataset_name=dataset_name)
else:
prompts = DatasetTemplates(
dataset_name=dataset_name, subset_name=subset_name
)
except Exception:
raise ValueError(f"{dataset_name} and {subset_name} not found")
if prompt_name in prompts.all_template_names:
return prompts[prompt_name]
else:
raise ValueError(
f"expected only a single `:` as separator between \
prompt category and name, but got `{prompt_id}` instead"
f"{prompt_name} not in prompt list {prompts.all_template_names}"
)
else:
try:
return PROMPT_REGISTRY[category_name][prompt_name]
except Exception:
raise ValueError(
f"expected only a single `:` as separator between \
prompt category and name, but got `{prompt_id}` instead"
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment