Commit c4c20ff5 authored by lintangsutawika's avatar lintangsutawika
Browse files

pre-commit stuff

parent e56b950a
......@@ -45,7 +45,7 @@ python main.py \
--device cuda:0
```
Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partialy trained checkpoints:
Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partially trained checkpoints:
```bash
python main.py \
......@@ -64,8 +64,8 @@ To use with [PEFT](https://github.com/huggingface/peft), take the call you would
python main.py \
--model hf-causal \
--model_args pretrained=EleutherAI/gpt-j-6b,peft=nomic-ai/gpt4all-j-lora \
--tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq \
--device cuda:0
--tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq \
--device cuda:0
```
Our library also supports the OpenAI API:
......@@ -78,7 +78,7 @@ python main.py \
--tasks lambada_openai,hellaswag
```
While this functionality is only officially mantained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as [goose.ai](goose.ai) with minor modification. We also have an implementation for the [TextSynth](https://textsynth.com/index.html) API, using `--model textsynth`.
While this functionality is only officially maintained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as [goose.ai](goose.ai) with minor modification. We also have an implementation for the [TextSynth](https://textsynth.com/index.html) API, using `--model textsynth`.
To verify the data integrity of the tasks you're performing in addition to running the tasks themselves, you can use the `--check_integrity` flag:
......@@ -116,7 +116,7 @@ When reporting eval harness results, please also report the version of each task
## Test Set Decontamination
To address concerns about train / test contamination, we provide utilities for comparing results on a benchmark using only the data points nto found in the model trainign set. Unfortunately, outside of models trained on the Pile ans C4, its very rare that people who train models disclose the contents of the training data. However this utility can be useful to evaluate models you have trained on private data, provided you are willing to pre-compute the necessary indices. We provide computed indices for 13-gram exact match deduplication against the Pile, and plan to add additional precomputed dataset indices in the future (including C4 and min-hash LSH deduplication).
To address concerns about train / test contamination, we provide utilities for comparing results on a benchmark using only the data points nto found in the model trainign set. Unfortunately, outside of models trained on the Pile and C4, its very rare that people who train models disclose the contents of the training data. However this utility can be useful to evaluate models you have trained on private data, provided you are willing to pre-compute the necessary indices. We provide computed indices for 13-gram exact match deduplication against the Pile, and plan to add additional precomputed dataset indices in the future (including C4 and min-hash LSH deduplication).
For details on text decontamination, see the [decontamination guide](./docs/decontamination.md).
......
dataset_path: super_glue
dataset_name: cb
training_split: train
validation_split: validation
template_aliases: "{% set hypo = hypothesis %}"
doc_to_text: "Suppose {{premise}} Can we infer that \"{{hypo}}\"? Yes, no, or maybe?"
doc_to_target: "{% set answer_choices = ['Yes', 'No', 'Maybe'] %}{{answer_choices[label]}}"
metric_list:
- metric: exact_match
aggregation: mean
higher_is_better: true
ignore_case: true
ignore_punctuation: true
\ No newline at end of file
from . import metrics
\ No newline at end of file
from . import metrics
......@@ -3,9 +3,10 @@ from typing import List
from lm_eval.api.instance import Instance
class Filter:
"""
Filter classes operate on a per-task level.
Filter classes operate on a per-task level.
They take all model outputs (`instance.resps` for all `task.instances`)
across all instances of a task, and perform operations.
In a single run, one can configure any number of separate filters or lists of filters.
......@@ -25,30 +26,33 @@ class Filter:
[<filtered resps for instance 0>, <filtered resps for instance 1>]
"""
return resps
@dataclass
class FilterEnsemble:
"""
FilterEnsemble creates a pipeline applying multiple filters.
Its intended usage is to stack multiple post-processing steps in order.
`task.apply_filters` should use a list of FilterEnsemble classes that it stores, to apply each
Its intended usage is to stack multiple post-processing steps in order.
`task.apply_filters` should use a list of FilterEnsemble classes that it stores, to apply each
pipeline separately.
"""
name: str
name: str
filters: List[Filter]
def apply(self, instances: List[Instance]):
resps = [inst.resps for inst in instances] # operate just on the model responses
resps = [
inst.resps for inst in instances
] # operate just on the model responses
for f in self.filters:
# apply filters in sequence
out = f.apply(resps)
resps = out # TODO: handle the case where a filter returns multiple "buckets"
resps = (
out # TODO: handle the case where a filter returns multiple "buckets"
)
# add the end results after filtering to filtered_requests of their respective source instances.
# has key `self.name`: each FilterEnsemble applied in a given run should use a different name.
for inst, resp in zip(instances, resps):
inst.filtered_resps[self.name] = resp
from dataclasses import dataclass, field
from typing import Literal, Tuple
@dataclass
class Instance:
request_type: str = Literal["loglikelihood", "loglikelihood_rolling", "greedy_until"]
request_type: str = Literal[
"loglikelihood", "loglikelihood_rolling", "greedy_until"
]
doc: dict = None
arguments: tuple = None
idx: int = None
metadata: tuple = Tuple[str, int, int] # TODO: better typehints here
metadata: tuple = Tuple[str, int, int] # TODO: better typehints here
resps: list = field(default_factory=list)
filtered_resps: dict = field(default_factory=dict)
......@@ -19,10 +22,12 @@ class Instance:
def __post_init__(self):
# unpack metadata field
self.task_name, self.doc_id, self.repeats = self.metadata
@property
def args(self):
"""
Returns (string,) where `string` is the string to calculate loglikelihood over
"""
return self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
return (
self.arguments if isinstance(self.arguments, tuple) else (self.arguments,)
)
......@@ -26,7 +26,6 @@ HIGHER_IS_BETTER_REGISTRY = {
"bleu": True,
"chrf": True,
"ter": False,
"acc": True,
"acc_norm": True,
"acc_mutual_info": True,
......@@ -35,6 +34,7 @@ HIGHER_IS_BETTER_REGISTRY = {
"bits_per_byte": False,
}
def register_metric(name):
# TODO: do we want to enforce a certain interface to registered metrics?
def decorate(fn):
......@@ -44,7 +44,7 @@ def register_metric(name):
METRIC_REGISTRY[name] = fn
return fn
return decorate
......@@ -54,12 +54,14 @@ def get_metric(name):
return METRIC_REGISTRY[name]
except KeyError:
# TODO: change this print to logging?
print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
print(
f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library..."
)
try:
metric_object = evaluate.load(name)
return metric_object.compute
except:
except Exception:
raise Warning(
"{} not found in the evaluate library!".format(name),
"Please check https://huggingface.co/evaluate-metric",
......@@ -75,7 +77,7 @@ def register_aggregation(name):
AGGREGATION_REGISTRY[name] = fn
return fn
return decorate
......
......@@ -6,14 +6,15 @@ from lm_eval import utils
MODEL_REGISTRY = {}
def register_model(*names):
# either pass a list or a single alias.
# function receives them as a tuple of strings
def decorate(cls):
for name in names:
assert (
issubclass(cls, LM)
for name in names:
assert issubclass(
cls, LM
), f"Model '{name}' ({cls.__name__}) must extend LM class"
assert (
......@@ -22,7 +23,7 @@ def register_model(*names):
MODEL_REGISTRY[name] = cls
return cls
return decorate
......
......@@ -5,6 +5,7 @@ group_registry = {}
task2func_index = {}
func2task_index = {}
def register_task(name):
def wrapper(func):
......@@ -15,16 +16,16 @@ def register_task(name):
return wrapper
def register_group(name):
def wrapper(func):
func_name = func2task_index[func.__name__]
if name in group_registry:
group_registry[name].append(
func_name
)
group_registry[name].append(func_name)
else:
group_registry[name] = [func_name]
return func
return wrapper
class Sampler:
def __init__(self, docs, task, fewshot_indices=None, rnd=None):
self.rnd = rnd
......@@ -12,15 +9,18 @@ class Sampler:
self.delimiter = self.config.delimiter
self.docs = docs # HF dataset split, provided by task._fewshot_docs()
if fewshot_indices: # subset few-shot docs from
self.docs = docs # HF dataset split, provided by task._fewshot_docs()
if fewshot_indices: # subset few-shot docs from
self.docs = self.docs.select(fewshot_indices)
def get_context(self, doc, num_fewshot):
# draw an extra fewshot sample if using same split as evaluting on
n_samples = num_fewshot + 1 if self.config.fewshot_split == self.config.test_split else num_fewshot
# draw an extra fewshot sample if using same split as evaluating on
n_samples = (
num_fewshot + 1
if self.config.fewshot_split == self.config.test_split
else num_fewshot
)
# draw `n_samples` docs from fewshot_docs
fewshotex = self.sample(n_samples)
......@@ -28,16 +28,16 @@ class Sampler:
# get rid of the doc that's the one we're evaluating, if it's in the fewshot
# TODO: should we just stop people from using fewshot from same split as evaluating?
selected_docs = [x for x in fewshotex if x != doc][:num_fewshot]
labeled_examples = (
self.delimiter.join(
[
self.task.doc_to_text(doc) + self.task.doc_to_target(doc)
for doc in selected_docs
]
)
+ self.delimiter
self.delimiter.join(
[
self.task.doc_to_text(doc) + self.task.doc_to_target(doc)
for doc in selected_docs
]
)
+ self.delimiter
)
# only returns the fewshot context! Does not append the document, do this outside the object
return labeled_examples
......@@ -51,25 +51,22 @@ class Sampler:
class BalancedSampler(Sampler):
def sample(self, n):
"""
TODO: this should return approximately class-balanced samples from our fewshot examples.
TODO: this should return approximately class-balanced samples from our fewshot examples.
TODO: what order should they be in? maybe random?
"""
pass
class ManualSampler(Sampler):
class ManualSampler(Sampler):
def sample(self, n):
"""
"""
pass
""" """
pass
# TODO: how should we do design here? might be better to have a single sampler and pass more kwargs at init.
# TODO: how should we do design here? might be better to have a single sampler and pass more kwargs at init.
# Depends what's easier for new user to add own functionality on top of
# types of sampler:
......
......@@ -19,9 +19,15 @@ from lm_eval import utils
from lm_eval.api import samplers
from lm_eval.api.instance import Instance
from lm_eval.api.metrics import (
METRIC_REGISTRY, AGGREGATION_REGISTRY, HIGHER_IS_BETTER_REGISTRY,
get_metric, get_aggregation, mean, weighted_perplexity, bits_per_byte
)
METRIC_REGISTRY,
AGGREGATION_REGISTRY,
HIGHER_IS_BETTER_REGISTRY,
get_metric,
get_aggregation,
mean,
weighted_perplexity,
bits_per_byte,
)
from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
......@@ -35,15 +41,17 @@ class TaskConfig(dict):
group: str = None
names: str = None
reference: str = None
task_name: str = None # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
task_name: str = (
None # TODO: deprecate this, it'll be set in __post_init__ to be names[0]
)
base_task: str = None
dataset_path: str = None
dataset_name: str = None
training_split: str = None
validation_split: str = None
test_split: str = None
fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
template_aliases: str = None
doc_to_text: Union[Callable, str] = None
doc_to_target: Union[Callable, str] = None
......@@ -57,18 +65,20 @@ class TaskConfig(dict):
output_type: str = "greedy_until"
delimiter: str = "\n\n"
filter_list: Union[str, list] = None
normalization: str = None # TODO: add length-normalization of various types, mutual info
normalization: str = (
None # TODO: add length-normalization of various types, mutual info
)
should_decontaminate: bool = False
doc_to_decontamination_query: str = None
use_prompt: str = None
metadata: str = None # by default, not used in the code. allows for users to pass arbitrary info to tasks
metadata: str = None # by default, not used in the code. allows for users to pass arbitrary info to tasks
def __post_init__(self):
# allow user-specified aliases so that users can
# force prompt-compatibility for some prompt regardless of
# field names in prompt
if self.template_aliases != None:
if self.template_aliases is not None:
if type(self.doc_to_text) == str:
self.doc_to_text = self.template_aliases + self.doc_to_text
......@@ -103,6 +113,7 @@ class Task(abc.ABC):
DATASET_NAME: str = None
OUTPUT_TYPE: str = None
def __init__(
self,
data_dir=None,
......@@ -141,12 +152,15 @@ class Task(abc.ABC):
if not hasattr(self, "_filters"):
self._filters = []
for name, components in self._config.get("filters", [["none", ["take_first"]]]):
for name, components in self._config.get(
"filters", [["none", ["take_first"]]]
):
filter_pipeline = build_filter_ensemble(name, components)
self._filters.append(filter_pipeline)
self.sampler = samplers.Sampler(list(self.fewshot_docs()), self, rnd=random.Random()) # TODO: pass the correct docs in here
self.sampler = samplers.Sampler(
list(self.fewshot_docs()), self, rnd=random.Random()
) # TODO: pass the correct docs in here
def download(self, data_dir=None, cache_dir=None, download_mode=None):
"""Downloads and returns the task dataset.
......@@ -230,7 +244,7 @@ class Task(abc.ABC):
eval_logger.warning(
"has_training_docs and has_validation_docs are False"
"using test_docs but this is not recommended."
)
)
return self.test_docs()
def _process_doc(self, doc):
......@@ -283,19 +297,24 @@ class Task(abc.ABC):
), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
instances = []
for doc_id, doc in enumerate(itertools.islice(docs, 0, limit) if limit else docs):
for doc_id, doc in enumerate(
itertools.islice(docs, 0, limit) if limit else docs
):
# sample fewshot context
fewshot_ctx = self.fewshot_context(
doc, self._config.num_fewshot, rnd=random.Random()
)
# TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
inst = self.construct_requests(doc=doc, ctx=fewshot_ctx, metadata=(self._config["task_name"], doc_id, self._config.repeats))
inst = self.construct_requests(
doc=doc,
ctx=fewshot_ctx,
metadata=(self._config["task_name"], doc_id, self._config.repeats),
)
if not isinstance(inst, list):
inst = [inst]
instances.extend(inst)
self._instances = instances
assert len(self._instances) != 0, "task.build_requests() did not find any docs!"
......@@ -316,7 +335,7 @@ class Task(abc.ABC):
whichever is the main split used.
:param repeats: int
TODO: update this docstring
The number of times each instance in a dataset is inferred on. Defaults to 1,
The number of times each instance in a dataset is inferred on. Defaults to 1,
can be increased for techniques like majority voting.
"""
pass
......@@ -428,11 +447,7 @@ class ConfigurableTask(Task):
CONFIG = None
def __init__(
self,
data_dir=None,
cache_dir=None,
download_mode=None,
config: dict=None
self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
):
# Get pre-configured attributes
self._config = self.CONFIG
......@@ -442,11 +457,13 @@ class ConfigurableTask(Task):
self._config = TaskConfig(**config)
# Overwrite configs
else:
if config != None:
if config is not None:
self._config.__dict__.update(config)
if self._config is None:
raise ValueError("Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg")
raise ValueError(
"Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
)
if self._config.output_type is not None:
self.OUTPUT_TYPE = self._config.output_type
......@@ -464,16 +481,22 @@ class ConfigurableTask(Task):
self._higher_is_better = {}
for metric_config in self._config.metric_list:
metric_name = metric_config['metric']
aggregation = metric_config['aggregation']
higher_is_better = metric_config['higher_is_better']
kwargs = {key: metric_config[key] for key in metric_config if key not in ['metric', 'aggregation', 'higher_is_better']}
metric_name = metric_config["metric"]
aggregation = metric_config["aggregation"]
higher_is_better = metric_config["higher_is_better"]
kwargs = {
key: metric_config[key]
for key in metric_config
if key not in ["metric", "aggregation", "higher_is_better"]
}
self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
if metric_name in METRIC_REGISTRY.keys():
self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[metric_name]
self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
metric_name
]
else:
self._higher_is_better[metric_name] = higher_is_better
try:
......@@ -481,7 +504,7 @@ class ConfigurableTask(Task):
self._metric_list[metric_name] = metric_object
self._metric_kwargs[metric_name] = kwargs
except Exception as ex:
except Exception:
raise Warning(
"{} not found in the evaluate library!".format(metric_name),
"Please check https://huggingface.co/evaluate-metric",
......@@ -492,7 +515,7 @@ class ConfigurableTask(Task):
self._fewshot_docs = None
self._filters = []
if self._config.filter_list != None:
if self._config.filter_list is not None:
for filter_config in self._config.filter_list:
for filter_pipeline in filter_config:
filter_name = filter_config["name"]
......@@ -501,39 +524,28 @@ class ConfigurableTask(Task):
for function in filter_functions:
kwargs = {
key: function[key] for key in function if key != "function"
}
components.append([
function['function'],
kwargs
])
filter_pipeline = build_filter_ensemble(
filter_name,
components
)
}
components.append([function["function"], kwargs])
filter_pipeline = build_filter_ensemble(filter_name, components)
self._filters.append(filter_pipeline)
else:
self._filters = [
build_filter_ensemble(
"take_first",
[["take_first", None]]
)
build_filter_ensemble("take_first", [["take_first", None]])
]
if self._config.use_prompt is not None:
eval_logger.info(
f"loading prompt {self._config.use_prompt}"
)
eval_logger.info(f"loading prompt {self._config.use_prompt}")
self.prompt = get_prompt(
self._config.use_prompt,
self.DATASET_PATH,
self.DATASET_NAME
)
self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
)
else:
self.prompt = None
if self.fewshot_docs() != None:
self.sampler = samplers.Sampler(list(self.fewshot_docs()), self, rnd=random.Random()) # TODO: pass the correct docs in here
if self.fewshot_docs() is not None:
self.sampler = samplers.Sampler(
list(self.fewshot_docs()), self, rnd=random.Random()
) # TODO: pass the correct docs in here
def has_training_docs(self):
if self._config.training_split is not None:
......@@ -566,14 +578,14 @@ class ConfigurableTask(Task):
return self.dataset[self._config.test_split]
def fewshot_docs(self):
if (self._config.num_fewshot > 0) and (self._config.fewshot_split == None):
if (self._config.num_fewshot > 0) and (self._config.fewshot_split is None):
eval_logger.warning(
"num_fewshot > 0 but fewshot_split is None. "
"using preconfigured rule."
)
)
return super().fewshot_docs()
elif self._config.fewshot_split != None:
elif self._config.fewshot_split is not None:
return self.dataset[self._config.fewshot_split]
def should_decontaminate(self):
......@@ -600,7 +612,7 @@ class ConfigurableTask(Task):
doc_to_text = self.prompt
else:
doc_to_text = self._config.doc_to_text
if type(doc_to_text) == str:
return utils.apply_template(doc_to_text, doc)
elif callable(doc_to_text):
......@@ -630,55 +642,55 @@ class ConfigurableTask(Task):
def construct_requests(self, doc, ctx, **kwargs):
if self.OUTPUT_TYPE == "loglikelihood":
arguments=(ctx, self.doc_to_target(doc))
arguments = (ctx, self.doc_to_target(doc))
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
arguments=(self.doc_to_target(doc),)
arguments = (self.doc_to_target(doc),)
elif self.OUTPUT_TYPE == "multiple_choice":
# we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
# TODO: any cleaner way to do this?
choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
choices = ast.literal_eval(
utils.apply_template(
self._config.template_aliases + "{{answer_choices}}", doc
)
)
request_list = [
Instance(
request_type="loglikelihood",
doc=doc,
doc=doc,
arguments=(ctx, " {}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(choices)
for i, choice in enumerate(choices)
]
# TODO: we should raise a warning telling users this will at most ~2x runtime.
if "acc_mutual_info" in self._metric_list.keys():
# if we are calculating multiple choice accuracy
# using mutual information instead of raw loglikelihood as metric, need unconditional lls.
# here mutual info refers to calculating
# here mutual info refers to calculating
# log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
# in other words normalizing by subtracting the unconditional logprob of each choice.
request_list.extend(
[
Instance(
request_type="loglikelihood",
doc=doc,
doc=doc,
arguments=("", "{}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(choices)
for i, choice in enumerate(choices)
]
)
return request_list
elif self.OUTPUT_TYPE == "greedy_until":
arguments=(ctx, self._config.delimiter)
arguments = (ctx, self._config.delimiter)
return Instance(
request_type=self.OUTPUT_TYPE,
doc=doc,
arguments=arguments,
idx=0,
**kwargs
)
request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
)
def process_results(self, doc, results):
......@@ -697,11 +709,20 @@ class ConfigurableTask(Task):
"bits_per_byte": (loglikelihood, bytes_),
}
elif self.OUTPUT_TYPE == "multiple_choice":
lls = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy
lls = [
res[0] for res in results
] # only retain loglikelihoods, discard is_greedy
gold = int(self.doc_to_target(doc))
# retrieve choices in List[str] form, to compute choice lengths, etc.
choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
if 2 * len(choices) == len(lls) and "acc_mutual_info" in self._metric_list.keys():
choices = ast.literal_eval(
utils.apply_template(
self._config.template_aliases + "{{answer_choices}}", doc
)
)
if (
2 * len(choices) == len(lls)
and "acc_mutual_info" in self._metric_list.keys()
):
# then we are doing mutual info.
# this stores the "dryrun" / unconditional answer loglikelihoods
lls_unconditional = lls[1::2]
......@@ -722,12 +743,16 @@ class ConfigurableTask(Task):
if "exact_match" in self._metric_list.keys():
# TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
is_greedy = [res[1] for res in results] # take only the `is_greedy` results
is_greedy = is_greedy[gold] # take value for the gold answer
is_greedy = [
res[1] for res in results
] # take only the `is_greedy` results
is_greedy = is_greedy[gold] # take value for the gold answer
result_dict["exact_match"] = int(is_greedy)
if "acc_mutual_info" in self._metric_list.keys():
lls_mutual_info = [ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)]
lls_mutual_info = [
ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
]
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
result_dict["acc_mutual_info"] = acc_mutual_info
......@@ -740,15 +765,14 @@ class ConfigurableTask(Task):
for key, result in zip(self._metric_list.keys(), results):
_dict = self._metric_list[key].compute(
references=[gold],
predictions=[result],
**self._metric_kwargs[key]
references=[gold], predictions=[result], **self._metric_kwargs[key]
)
result_dict[key] = _dict[key]
else:
raise ValueError(f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
"'loglikelihood', 'loglikelihood_rolling', 'greedy_until'"
raise ValueError(
f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
"'loglikelihood', 'loglikelihood_rolling', 'greedy_until'",
)
return result_dict
......@@ -769,17 +793,21 @@ class MultipleChoiceTask(Task):
def construct_requests(self, doc, ctx, **kwargs):
# TODO: add mutual info here?
return [Instance(
return [
Instance(
request_type="loglikelihood",
doc=doc,
doc=doc,
arguments=(ctx, " {}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(doc["choices"])]
for i, choice in enumerate(doc["choices"])
]
def process_results(self, doc, results):
results = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
results = [
res[0] for res in results
] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
gold = doc["gold"]
acc = 1.0 if np.argmax(results) == gold else 0.0
......@@ -815,9 +843,7 @@ class PerplexityTask(Task):
assert k == 0
return []
def fewshot_context(
self, doc, num_fewshot, rnd=None
):
def fewshot_context(self, doc, num_fewshot, rnd=None):
assert (
num_fewshot == 0
), "The number of fewshot examples must be 0 for perplexity tasks."
......@@ -846,7 +872,13 @@ class PerplexityTask(Task):
def construct_requests(self, doc, ctx, **kwargs):
assert not ctx
return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=(self.doc_to_target(doc),), idx=0, **kwargs)
return Instance(
request_type=self.OUTPUT_TYPE,
doc=doc,
arguments=(self.doc_to_target(doc),),
idx=0,
**kwargs,
)
def process_results(self, doc, results):
(loglikelihood,) = results
......
......@@ -10,7 +10,12 @@ import lm_eval.api.metrics
import lm_eval.tasks
import lm_eval.models
from lm_eval.utils import positional_deprecated, run_task_tests, make_table, get_git_commit_hash
from lm_eval.utils import (
positional_deprecated,
run_task_tests,
make_table,
get_git_commit_hash,
)
from lm_eval.logger import eval_logger
......@@ -127,20 +132,20 @@ def evaluate(
Dictionary of results
"""
decontaminate = decontamination_ngrams_path is not None
# decontaminate = decontamination_ngrams_path is not None
results = collections.defaultdict(dict)
versions = collections.defaultdict(dict)
requests = collections.defaultdict(list)
requests_origin = collections.defaultdict(list)
# requests_origin = collections.defaultdict(list)
docs = {}
# docs = {}
# get lists of each type of request
for task_name, task in task_dict.items():
versions[task_name] = task.VERSION
# deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
# task_docs = list(task_doc_func())
# rnd = random.Random()
......@@ -150,9 +155,13 @@ def evaluate(
# for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
task.build_all_requests(limit=limit)
# aggregate Instances by LM method requested to get output.
reqtype = "loglikelihood" if task.OUTPUT_TYPE == "multiple_choice" else task.OUTPUT_TYPE #TODO: this is hacky, fix in task.py
requests[reqtype].extend(task.instances)
reqtype = (
"loglikelihood"
if task.OUTPUT_TYPE == "multiple_choice"
else task.OUTPUT_TYPE
) # TODO: this is hacky, fix in task.py
requests[reqtype].extend(task.instances)
### Run LM on inputs, get all outputs ###
# execute each type of request
for reqtype, reqs in requests.items():
......@@ -161,7 +170,7 @@ def evaluate(
cloned_reqs = []
for req in reqs:
cloned_reqs.extend([req] * req.repeats)
# run requests through model
resps = getattr(lm, reqtype)(cloned_reqs)
......@@ -175,7 +184,7 @@ def evaluate(
task.apply_filters()
### Collect values of metrics on all datapoints ###
# TODO: make metric configurable, add metric registry
# TODO: make metric configurable, add metric registry
vals = collections.defaultdict(list)
# unpack results and sort back in order and return control to Task
......@@ -183,11 +192,17 @@ def evaluate(
# calculate values for each filter setup (TODO: make getting list of keys cleaner)
# TODO: make it possible to use a different metric per key
for key in task.instances[0].filtered_resps.keys():
for doc_id, doc in enumerate(itertools.islice(task.test_docs(), 0, limit) if task.has_test_docs() else task.validation_docs()):
for doc_id, doc in enumerate(
itertools.islice(task.test_docs(), 0, limit)
if task.has_test_docs()
else task.validation_docs()
):
# subset instances to only this document id ; sort by idx
requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
requests.sort(key=lambda x: x.idx)
metrics = task.process_results(doc, [req.filtered_resps[key] for req in requests])
metrics = task.process_results(
doc, [req.filtered_resps[key] for req in requests]
)
for metric, value in metrics.items():
vals[(task_name, key, metric)].append(value)
......@@ -195,7 +210,9 @@ def evaluate(
# aggregate results ; run bootstrap CIs
for (task_name, key, metric), items in vals.items():
task = task_dict[task_name]
results[task_name][metric + " - filter=" + key] = task.aggregation()[metric](items)
results[task_name][metric + " - filter=" + key] = task.aggregation()[metric](
items
)
# hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
# so we run them less iterations. still looking for a cleaner way to do this
......
......@@ -6,10 +6,10 @@ from . import extraction
FILTER_REGISTRY = {
"take_first": selection.TakeFirstFilter,
"regex": extraction.RegexFilter,
# TODO: implement this filter. either it should take in an arbitrary "scoring"/reward function
# that takes an input and returns a scalar and then should select the max reward,
# TODO: implement this filter. either it should take in an arbitrary "scoring"/reward function
# that takes an input and returns a scalar and then should select the max reward,
# or should implement different filters for different ways of handling a reward model's inference.
#"arg_max": selection.ArgMaxFilter,
# "arg_max": selection.ArgMaxFilter,
}
......@@ -24,11 +24,11 @@ def build_filter_ensemble(filter_name, components):
filters = []
for (function, kwargs) in components:
if kwargs == None:
if kwargs is None:
f = get_filter(function)()
else:
# create a filter given its name in the registry
f = get_filter(function)(**kwargs) # TODO: pass kwargs to filters properly
f = get_filter(function)(**kwargs) # TODO: pass kwargs to filters properly
# add the filter as a pipeline step
filters.append(f)
......
......@@ -4,7 +4,7 @@ from lm_eval.api.filter import Filter
class DecontaminationFilter(Filter):
"""
A filter which evaluates
A filter which evaluates
"""
name = "track_decontamination"
......@@ -12,7 +12,7 @@ class DecontaminationFilter(Filter):
def __init__(self, path):
"""
TODO: make sure only ever run one time on the train set (should this be cached as a class var? keyed by value for "path").
TODO: make sure only ever run one time on the train set (should this be cached as a class var? keyed by value for "path").
should further cache result on a given (task_name, doc_id)
"""
self._decontam_results = None
......@@ -21,4 +21,4 @@ class DecontaminationFilter(Filter):
"""
Return {"no_contamination", "only_contamination"} keys for the 2 different subsets
"""
pass
\ No newline at end of file
pass
......@@ -4,10 +4,7 @@ from lm_eval.api.filter import Filter
class RegexFilter(Filter):
"""
"""
""" """
def __init__(self, regex_pattern=r"#### (\-?[0-9\.\,]+)", fallback="[invalid]"):
"""
......@@ -20,7 +17,7 @@ class RegexFilter(Filter):
def apply(self, resps):
# here, we assume we have a list, in which each element is
# a list of model responses for some particular input/target pair.
# a list of model responses for some particular input/target pair.
# so we process each of these (same input/target response sets)
# independently (and keep them a list.)
def filter_set(inst):
......
from lm_eval.api.filter import Filter
class TakeFirstFilter:
class TakeFirstFilter:
def __init__(self):
"""
Can define custom behavior here, if an individual instantiation of a Filter class should have state.
......@@ -11,4 +11,4 @@ class TakeFirstFilter:
"""
Assuming each entry of `resps` is a list of model responses, we discard all but the first response.
"""
return map(lambda r: r[0], resps)
\ No newline at end of file
return map(lambda r: r[0], resps)
import logging
logging.basicConfig(
format='%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
level=logging.INFO
)
eval_logger = logging.getLogger("lm-eval")
\ No newline at end of file
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.INFO,
)
eval_logger = logging.getLogger("lm-eval")
......@@ -111,7 +111,11 @@ class HFLM(LM):
def _model_generate(self, context, max_length, eos_token_id):
return self.gpt2.generate(
context, max_length=max_length, pad_token_id=eos_token_id, eos_token_id=eos_token_id, do_sample=False
context,
max_length=max_length,
pad_token_id=eos_token_id,
eos_token_id=eos_token_id,
do_sample=False,
)
def loglikelihood(self, requests):
......
......@@ -2,46 +2,44 @@ from lm_eval.logger import eval_logger
from promptsource.templates import DatasetTemplates
# TODO: decide whether we want jinja2 or f-string prompts. would it be cursed to support both?
# Prompt library.
# Prompt library.
# Stores prompts in a dictionary indexed by 2 levels:
# prompt category name, and prompt name.
# This allows us to access prompts
PROMPT_REGISTRY = {
"qa-basic": {
"question-newline-answer": "Question: {{question}}\nAnswer:",
"q-newline-a": "Q: {{question}}\nA:"
"q-newline-a": "Q: {{question}}\nA:",
},
}
def get_prompt(prompt_id: str, dataset_name=None, subset_name=None):
# unpack prompt name
# unpack prompt name
category_name, prompt_name = prompt_id.split(":")
eval_logger.info(
f"Loading prompt from {category_name}"
)
eval_logger.info(f"Loading prompt from {category_name}")
if category_name == "promptsource":
try:
# prompts = DatasetTemplates(dataset_name, dataset_path)
if subset_name == None:
if subset_name is None:
prompts = DatasetTemplates(dataset_name=dataset_name)
else:
prompts = DatasetTemplates(dataset_name=dataset_name, subset_name=subset_name)
except:
raise ValueError(
f"{dataset_name} and {subset_name} not found"
prompts = DatasetTemplates(
dataset_name=dataset_name, subset_name=subset_name
)
except Exception:
raise ValueError(f"{dataset_name} and {subset_name} not found")
if prompt_name in prompts.all_template_names:
return prompts[prompt_name]
else:
raise ValueError(
f"{prompt_name} not in prompt list {prompts.all_template_names}"
)
)
else:
try:
return PROMPT_REGISTRY[category_name][prompt_name]
except:
except Exception:
raise ValueError(
f"expected only a single `:` as separator between \
prompt category and name, but got `{prompt_id}` instead"
)
)
......@@ -10,8 +10,8 @@ from lm_eval.api.register import (
register_task,
register_group,
task_registry,
group_registry
)
group_registry,
)
def get_task_name_from_config(task_config):
......@@ -28,20 +28,19 @@ for root, subdirs, file_list in os.walk(task_dir):
config = utils.load_yaml_config(yaml_path)
SubClass = type(
config['task']+'ConfigurableTask',
config["task"] + "ConfigurableTask",
(ConfigurableTask,),
{'CONFIG': TaskConfig(**config)}
{"CONFIG": TaskConfig(**config)},
)
if 'task' in config:
if "task" in config:
task_name = "{}:{}".format(
get_task_name_from_config(config),
config['task']
)
get_task_name_from_config(config), config["task"]
)
register_task(task_name)(SubClass)
if 'group' in config:
for group in config['group']:
if "group" in config:
for group in config["group"]:
register_group(group)(SubClass)
except Exception as err:
print(f"Unexpected {err=}, {type(err)=}")
......@@ -50,6 +49,7 @@ TASK_REGISTRY = task_registry
GROUP_REGISTRY = group_registry
ALL_TASKS = sorted(list(TASK_REGISTRY.keys()) + list(GROUP_REGISTRY.keys()))
def get_task(task_name, config):
try:
return TASK_REGISTRY[task_name](config=config)
......@@ -90,19 +90,15 @@ def get_task_dict(task_name_list: List[Union[str, dict, Task]], **kwargs):
if task_name not in task_name_from_registry_dict:
task_name_from_registry_dict = {
**task_name_from_registry_dict,
task_name: get_task(
task_name=task_name, config=config
)
}
task_name: get_task(task_name=task_name, config=config),
}
else:
task_name = task_element
if task_name not in task_name_from_registry_dict:
task_name_from_registry_dict = {
**task_name_from_registry_dict,
task_name: get_task(
task_name=task_element, config=config
)
}
task_name: get_task(task_name=task_element, config=config),
}
elif isinstance(task_element, dict):
task_element.update(config)
......@@ -110,22 +106,22 @@ def get_task_dict(task_name_list: List[Union[str, dict, Task]], **kwargs):
**task_name_from_config_dict,
get_task_name_from_config(task_element): ConfigurableTask(
config=task_element
)
),
}
elif isinstance(task_element, Task):
task_name_from_object_dict = {
**task_name_from_object_dict,
get_task_name_from_object(task_element): task_element
get_task_name_from_object(task_element): task_element,
}
# task_name_from_registry_dict = {
# task_name: get_task(
# task_name=task_name,
# task_config=config
# )
# for group_name in task_name_list for task_name in GROUP_REGISTRY[group_name]
# for group_name in task_name_list for task_name in GROUP_REGISTRY[group_name]
# if (isinstance(group_name, str)) and (group_name in GROUP_REGISTRY)
# }
# task_name_from_config_dict = {
......@@ -142,11 +138,11 @@ def get_task_dict(task_name_list: List[Union[str, dict, Task]], **kwargs):
# if isinstance(task_object, Task)
# }
assert set(task_name_from_registry_dict.keys()).isdisjoint(set(task_name_from_object_dict.keys()))
assert set(task_name_from_registry_dict.keys()).isdisjoint(
set(task_name_from_object_dict.keys())
)
return {
**task_name_from_registry_dict,
**task_name_from_config_dict,
**task_name_from_object_dict,
}
......@@ -12,6 +12,7 @@ a co-occurrence method fail to answer correctly) and an Easy Set of 5,197 questi
Homepage: https://allenai.org/data/arc
"""
from lm_eval import utils
from lm_eval.prompts import get_prompt
from lm_eval.api.task import MultipleChoiceTask
......@@ -27,6 +28,7 @@ _CITATION = """
}
"""
@register_group("arc")
@register_task("arc_easy")
class ARCEasy(MultipleChoiceTask):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment