".github/vscode:/vscode.git/clone" did not exist on "9b7cf9ee6c299e85e3273842ee2b007312f9276d"
Unverified Commit b62b9bd0 authored by Brendan Murphy's avatar Brendan Murphy Committed by GitHub
Browse files

Added CommonsenseQA task (#1721)



* Initial configuration

* Using the validation set for the test set, because the test set on HF doesn't have labels

* Probably just makes more sense to have validation be validation

* fix format ; add docs to tasks/README.md

* fix format

---------
Co-authored-by: default avatarhaileyschoelkopf <hailey@eleuther.ai>
parent 9b6179b2
......@@ -26,6 +26,7 @@
| [ceval](ceval/README.md) | Tasks that evaluate language understanding and reasoning in an educational context. | Chinese |
| [cmmlu](cmmlu/README.md) | Multi-subject multiple choice question tasks for comprehensive academic assessment. | Chinese |
| code_x_glue | Tasks that involve understanding and generating code across multiple programming languages. | Go, Java, JS, PHP, Python, Ruby |
| [commonsense_qa](commmonsense_qa/README.md) | CommonsenseQA, a multiple-choice QA dataset for measuring commonsense knowledge. | English |
| [copal_id](copal_id/README.md) | Indonesian causal commonsense reasoning dataset that captures local nuances. | Indonesian |
| [coqa](coqa/README.md) | Conversational question answering tasks to test dialog understanding. | English |
| [crows_pairs](crows_pairs/README.md) | Tasks designed to test model biases in various sociodemographic groups. | English, French |
......
# Task-name
### Paper
Title: `COMMONSENSEQA: A Question Answering Challenge Targeting
Commonsense Knowledge`
Abstract: https://arxiv.org/pdf/1811.00937.pdf
CommonsenseQA is a multiple-choice question answering dataset that requires different types of commonsense knowledge to predict the correct answers.
It contains 12,102 questions with one correct answer and four distractor answers.
Homepage: https://www.tau-nlp.org/commonsenseqa
### Citation
```
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
archivePrefix = "arXiv",
eprint = "1811.00937",
primaryClass = "cs",
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet.
#### Tasks
* `commonsense_qa`: Represents the "random" split from the paper. Uses an MMLU-style prompt, as (presumably) used by Llama evaluations.
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
task: commonsense_qa
dataset_path: tau/commonsense_qa
training_split: train
validation_split: validation
output_type: multiple_choice
doc_to_text: "Question: {{ question.strip() }}\nA. {{choices['text'][0]}}\nB. {{choices['text'][1]}}\nC. {{choices['text'][2]}}\nD. {{choices['text'][3]}}\nE. {{choices['text'][4]}}\nAnswer:"
doc_to_target: answerKey
doc_to_choice: ['A', 'B', 'C', 'D', 'E']
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment