Unverified Commit a1a4a32e authored by Leo Gao's avatar Leo Gao Committed by GitHub
Browse files

Merge pull request #119 from jon-tow/task-refactor

Refactor `Dataset` naming and `HFTask` properties
parents 826d90e2 5cfb7308
......@@ -58,10 +58,10 @@ class LM(abc.ABC):
return cls()
class Dataset(abc.ABC):
class Task(abc.ABC):
def __init__(self):
self.download()
self._traindocs = None
self._training_docs = None
def download(self):
"""Downloads the task dataset if necessary"""
......@@ -71,7 +71,7 @@ class Dataset(abc.ABC):
def has_training_docs(self):
"""Whether the task has a training set"""
pass
@abc.abstractmethod
def has_validation_docs(self):
"""Whether the task has a validation set"""
......@@ -84,23 +84,29 @@ class Dataset(abc.ABC):
def training_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def validation_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def test_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def fewshot_examples(self, k):
if self._traindocs is None:
self._traindocs = list(self.training_docs())
return random.sample(self._traindocs, k)
def fewshot_examples(self, k):
if self._training_docs is None:
self._training_docs = list(self.training_docs())
return random.sample(self._training_docs, k)
@abc.abstractmethod
def doc_to_text(self, doc):
......@@ -123,7 +129,7 @@ class Dataset(abc.ABC):
part of the document for `doc`.
"""
pass
@abc.abstractmethod
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
......@@ -161,7 +167,7 @@ class Dataset(abc.ABC):
def fewshot_context(self, doc, num_fewshot, provide_description):
raw_description = self.fewshot_description()
description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
if num_fewshot == 0:
labeled_examples = ""
else:
......
......@@ -2,12 +2,12 @@ import abc
import json
import os
from collections import namedtuple
from lm_eval.base import Dataset, mean, rf
from lm_eval.base import Task, mean, rf
from best_download import download_file
ArithmeticDoc = namedtuple('ArithmeticDoc', ['context', 'completion'])
class Arithmetic(Dataset):
class Arithmetic(Task):
directory = 'data/arithmetic/'
def __init__(self):
......
import datasets
import numpy as np
import random
from ..base import Dataset
from ..base import Task
class HFTask(Dataset):
class HFTask(Task):
DATASET_PATH = None
DATASET_NAME = None
def __init__(self):
self.data = None
super().__init__()
self._training_docs = None
def download(self):
self.data = datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)
......
......@@ -2,11 +2,11 @@
import json
import random
from lm_eval.base import Dataset
from lm_eval.base import Task
from ..utils import sh
class CoQA(Dataset):
class CoQA(Task):
def __init__(self):
self.download()
def download(self):
......
......@@ -5,9 +5,9 @@ from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
from . common import HFTask, simple_accuracy_metric, yesno
from pathlib import Path
from ..base import Dataset
from ..base import Task
class DROP(Dataset):
class DROP(Task):
DATAFOLDER = Path(__file__).parent / "../../data/drop"
def __init__(self):
......
from lm_eval.base import Dataset, rf, mean
from lm_eval.base import Task, rf, mean
from lm_eval.utils import sh
import json
import math
from best_download import download_file
class LAMBADA(Dataset):
class LAMBADA(Task):
def download(self):
sh("mkdir -p data/lambada")
download_file(
......
......@@ -30,10 +30,10 @@ class NaturalQs(HFTask):
def fewshot_examples(self, k):
# Data is too large to fit in memory. We just sample from the first bit.
if self._traindocs is None:
self._traindocs = list(islice(self.training_docs(), 0, 100000))
if self._training_docs is None:
self._training_docs = list(islice(self.training_docs(), 0, 100000))
return random.sample(self._traindocs, k)
return random.sample(self._training_docs, k)
def doc_to_text(self, doc):
return 'Q: ' + doc['question']['text'] + '\n\n' + 'A: '
......
import json
import random
from lm_eval.base import Dataset, rf, mean
from lm_eval.base import Task, rf, mean
from ..utils import sh
import os
class PiQA(Dataset):
class PiQA(Task):
def download(self):
if not os.path.exists('data/piqa'):
#TODO: use best_download
......
import json
import random
import os
from lm_eval.base import Dataset
from lm_eval.base import Task
from ..utils import sh
class QuAC(Dataset):
class QuAC(Task):
def __init__(self):
super().__init__()
......
import json
import random
import os
from lm_eval.base import Dataset, rf, mean
from lm_eval.base import Task, rf, mean
from tqdm import auto as tqdm_lib
from . common import simple_accuracy_metric
import numpy as np
from ..utils import sh
class SATAnalogies(Dataset):
class SATAnalogies(Task):
NEEDS_MANUAL_DL = True
def __init__(self):
......
import json
import random
from lm_eval.base import Dataset
from lm_eval.base import Task
from ..utils import sh
import csv
class StoryCloze(Dataset):
class StoryCloze(Task):
NEEDS_MANUAL_DL = True
def download(self):
......
import os
import json
import random
from lm_eval.base import Dataset, mean, rf
from lm_eval.base import Task, mean, rf
from ..utils import sh
class TriviaQA(Dataset):
class TriviaQA(Task):
def download(self):
if not os.path.exists('data/triviaqa'):
sh("""
......
import json
import random
import os
from lm_eval.base import Dataset
from lm_eval.base import Task
from ..utils import sh
class WinogradSchemaChallenge273(Dataset):
class WinogradSchemaChallenge273(Task):
def __init__(self):
super().__init__()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment