Unverified Commit 966b70ea authored by Charles Lovering's avatar Charles Lovering Committed by GitHub
Browse files

Merge pull request #18 from jordiclive/simplification

GEM Simplification
parents 9cd70235 ec80b255
...@@ -56,6 +56,7 @@ from . import hans ...@@ -56,6 +56,7 @@ from . import hans
from . import gem_webnlg from . import gem_webnlg
from . import gem_xsum from . import gem_xsum
from . import gem_mlsum from . import gem_mlsum
from . import gem_asset_turk
# from . import e2e_nlg_cleaned # from . import e2e_nlg_cleaned
######################################## ########################################
...@@ -115,6 +116,7 @@ TASK_REGISTRY = { ...@@ -115,6 +116,7 @@ TASK_REGISTRY = {
"lambada": lambada.LAMBADA, "lambada": lambada.LAMBADA,
"lambada_cloze": lambada_cloze.LAMBADA_cloze, "lambada_cloze": lambada_cloze.LAMBADA_cloze,
# multilingual lambada # multilingual lambada
**gem_asset_turk.construct_tasks(),
**lambada_multilingual.construct_tasks(), **lambada_multilingual.construct_tasks(),
"wikitext": wikitext.WikiText, "wikitext": wikitext.WikiText,
# "cbt-cn": cbt.CBTCN, # disabled pending context length fix # "cbt-cn": cbt.CBTCN, # disabled pending context length fix
......
"""
ASSET: ASSET (Alva-Manchego et al., 2020) is multi-reference dataset
for the evaluation of sentence simplification in English. The dataset
uses the same 2,359 sentences from TurkCorpus (Xu et al., 2016)
and each sentence is associated with 10 crowdsourced simplifications.
Unlike previous simplification datasets, which contain a single
transformation (e.g., lexical paraphrasing in TurkCorpus or sentence
splitting in HSplit), the simplifications in ASSET encompass a variety
of rewriting transformations.
https://aclanthology.org/2020.acl-main.424.pdf
TurkCorpus: TURKCorpus is a multi-reference dataset for the evaluation of
sentence simplification in English. The dataset consists of 2,359 sentences
from the Parallel Wikipedia Simplification (PWKP) corpus. Each sentence is
associated with 8 crowdsourced simplifications that focus on only lexical
paraphrasing (no sentence splitting or deletion).
https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf
"""
from lm_eval.base import PromptSourceTask
_CITATION = """
@article{DBLP:journals/corr/abs-2005-00481,
author = {Fernando Alva{-}Manchego and
Louis Martin and
Antoine Bordes and
Carolina Scarton and
Beno{\^{\i}}t Sagot and
Lucia Specia},
title = {{ASSET:} {A} Dataset for Tuning and Evaluation of Sentence Simplification
Models with Multiple Rewriting Transformations},
journal = {CoRR},
volume = {abs/2005.00481},
year = {2020},
url = {https://arxiv.org/abs/2005.00481},
eprinttype = {arXiv},
eprint = {2005.00481},
timestamp = {Thu, 14 Oct 2021 16:38:25 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-00481.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}"""
""""@article{Xu-EtAl:2016:TACL,
author = {Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch},
title = {Optimizing Statistical Machine Translation for Text Simplification},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year = {2016},
url = {https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf},
pages = {401--415}
}"""
class AssetTurk(PromptSourceTask):
VERSION = 0
DATASET_PATH = "GEM/wiki_auto_asset_turk"
DATASET_NAME = None
SPLIT = None
def has_training_docs(self):
return False
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self.has_training_docs():
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
if self.has_validation_docs():
return self.dataset["validation"]
def test_docs(self):
return self.dataset[str(self.SPLIT)]
def stopping_criteria(self):
return None
def max_generation_length(self):
return 200
# def higher_is_better(self):
# return {"bleu": True, "rouge": True}
class AssetTest(AssetTurk):
SPLIT = "test_asset"
class TurkTest(AssetTurk):
SPLIT = "test_turk"
class AssetTest1(AssetTurk):
SPLIT = "challenge_test_asset_backtranslation"
class AssetTest2(AssetTurk):
SPLIT = "challenge_test_asset_bfp02"
class AssetTest3(AssetTurk):
SPLIT = "challenge_test_asset_bfp05"
class AssetTest4(AssetTurk):
SPLIT = "challenge_test_asset_nopunc"
class TurkTest1(AssetTurk):
SPLIT = "challenge_test_turk_backtranslation"
class TurkTest2(AssetTurk):
SPLIT = "challenge_test_turk_bfp02"
class TurkTest3(AssetTurk):
SPLIT = "challenge_test_turk_bfp05"
class TurkTest4(AssetTurk):
SPLIT = "challenge_test_turk_nopunc"
ASSET_TURK_CLASSES = [
AssetTest,
TurkTest,
TurkTest1,
TurkTest2,
TurkTest3,
TurkTest4,
AssetTest1,
AssetTest2,
AssetTest3,
AssetTest4,
]
def construct_tasks():
tasks = {}
for asset_turk_class in ASSET_TURK_CLASSES:
tasks[f"GEM/wiki_auto_asset_turk_{asset_turk_class.SPLIT}"] = asset_turk_class
return tasks
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment