Unverified Commit 93510e3a authored by Leo Gao's avatar Leo Gao Committed by GitHub
Browse files

Merge pull request #80 from nicholaskross/master

Started SAT eval
parents afc614fe 515e0470
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.
import json
import random
import os
from lm_eval.base import Dataset
from ..utils import sh
class SATAnalogies(Dataset):
def __init__(self):
super().__init__()
def download(self):
# We should be using a checksum here.
# The canonical sha256 hash is below:
# 9dece377d8d57253ef8c78370ff15de0bb1d9e90a82c815a67ba1e621e921bfc
if not os.path.exists('data/sat') and os.path.exists('data/sat/SAT-package-V3.txt'):
raise NotImplementedError('SAT Analogies dataset is not provided. Follow instructions on https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art) to locate.')
def has_training_docs(self):
return False
def has_validation_docs(self):
return False
def has_test_docs(self):
return True
def training_docs(self):
return []
def validation_docs(self):
return []
def test_docs(self):
data = []
with open("data/sat/SAT-package-V3.txt", "r") as f:
lines = f.read().splitlines()
record = []
for line in lines:
if len(line) == 0 and record:
data.append(record)
record = []
elif len(line) > 0 and line[0] == '#':
continue
else:
record.append(line)
data.append(record)
docs = []
for record in data:
source = record[-8]
query = record[-7]
choices = record[-6:-1]
answer_key = record[-1]
doc = {
'source': source,
'query': query,
'choices': choices,
'answer_key': answer_key,
}
docs.append(doc)
return docs
def fewshot_description(self):
# This format is ONLY for the purposes of deduplication. For the task evaluation, we'll need to find a new strategy,
# to meet the needs of this particular task.
return "first thing is to second thing as\nthird thing is to fourth thing\nfifth thing is to sixth thing\nseventh thing is to eighth thing\nninth thing is to tenth thing\neleventh thing is to twelfth thing\nanswer which is either a b c d or e"
def doc_to_text(self, doc, include_target=True):
# SAT Analogies is currently only writing out full examples. Partial evaluation needs implementing.
format_qn = lambda x: x[0] + ' is to ' + x[1]
query = doc['query']
choices = doc['choices']
answer = doc['answer_key']
query_words = query.split(' ')[:2]
text = format_qn(query_words) + ' as' + '\n'
for choice in choices:
choice_words = choice.split(' ')[:2]
text += format_qn(choice_words) + '\n'
if include_target:
text += answer
return text
# TODO: Implement evaluation code
# ***IMPORTANT***: this evaluation function needs to be written for the new framework.
# For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py.
# Remove this comment when the evaluation code is implemented.
\ No newline at end of file
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.
import json
import random
import os
from lm_eval.base import Dataset, rf, mean
from tqdm import auto as tqdm_lib
from . common import simple_accuracy_metric
import numpy as np
from ..utils import sh
class SATAnalogies(Dataset):
def __init__(self):
super().__init__()
def download(self):
# We should be using a checksum here.
# The canonical sha256 hash is below:
# 9dece377d8d57253ef8c78370ff15de0bb1d9e90a82c815a67ba1e621e921bfc
if not os.path.exists('data/sat') and os.path.exists('data/sat/SAT-package-V3.txt'):
raise NotImplementedError('SAT Analogies dataset is not provided. Follow instructions on https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art) to locate.')
def has_training_docs(self):
return False
def has_validation_docs(self):
return False
def has_test_docs(self):
return True
def training_docs(self):
return []
def validation_docs(self):
return []
def test_docs(self):
data = []
with open("data/sat/SAT-package-V3.txt", "r") as f:
lines = f.read().splitlines()
record = []
for line in lines:
if len(line) == 0 and record:
data.append(record)
record = []
elif len(line) > 0 and line[0] == '#':
continue
else:
record.append(line)
data.append(record)
docs = []
for record in data:
source = record[-8]
query = record[-7]
choices = record[-6:-1]
answer_key = record[-1]
doc = {
'source': source,
'query': query,
'choices': choices,
'answer_key': answer_key,
}
docs.append(doc)
return docs
def fewshot_description(self):
# This format is ONLY for the purposes of deduplication. For the task evaluation, we'll need to find a new strategy,
# to meet the needs of this particular task.
return "first thing is to second thing as\nthird thing is to fourth thing\nfifth thing is to sixth thing\nseventh thing is to eighth thing\nninth thing is to tenth thing\neleventh thing is to twelfth thing\nanswer which is either a b c d or e"
def doc_to_text(self, doc, include_target=True):
# SAT Analogies is currently only writing out full examples. Partial evaluation needs implementing.
format_qn = lambda x: x[0] + ' is to ' + x[1]
query = doc['query']
choices = doc['choices']
answer = doc['answer_key']
query_words = query.split(' ')[:2]
text = format_qn(query_words) + ' as' + '\n'
for choice in choices:
choice_words = choice.split(' ')[:2]
text += format_qn(choice_words) + '\n'
if include_target:
text += answer
return text
def doc_to_target(self, doc):
# assumes answer_key is the true-answer's letter
return doc['answer_key']
def construct_requests(self, ctx):
# assumes the output is the predicted-answer's letter
ll_a = rf.loglikelihood(ctx, ' a')
ll_b = rf.loglikelihood(ctx, ' b')
ll_c = rf.loglikelihood(ctx, ' c')
ll_d = rf.loglikelihood(ctx, ' d')
ll_e = rf.loglikelihood(ctx, ' e')
return ll_a, ll_b, ll_c, ll_d, ll_e
def process_results(self, doc, results):
predicted_odds = np.array(list(results))
gold = doc["answer_key"]
acc = 1. if np.argmax(predicted_odds) == gold else 0.
return [
{
"submetric": "acc",
"value": acc,
"higher_is_better": True,
"aggregation": mean
}
]
def evaluate(self, docs, lm):
# functionality already implemented above
raise NotImplementedError()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment