Note that for externally hosted models, configs such as `--device` which relate to where to place a local model should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
Note that for externally hosted models, configs such as `--device` which relate to where to place a local model should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
| API or Inference Server | Implemented? | `--model <xxx>` name | Models supported: | Request Types: |
| API or Inference Server | Implemented? | `--model <xxx>` name | Models supported: | Request Types: |
| Neuron via AWS Inf2 (Causal LMs) | :heavy_check_mark: | `neuronx` | Any decoder-only AutoModelForCausalLM supported to run on [huggingface-ami image for inferentia2](https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Neuron via AWS Inf2 (Causal LMs) | :heavy_check_mark: | `neuronx` | Any decoder-only AutoModelForCausalLM supported to run on [huggingface-ami image for inferentia2](https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| [Neural Magic DeepSparse](https://github.com/neuralmagic/deepsparse) | :heavy_check_mark: | `deepsparse` | Any LM from [SparseZoo](https://sparsezoo.neuralmagic.com/) or on [HF Hub with the "deepsparse" tag](https://huggingface.co/models?other=deepsparse) | `generate_until`, `loglikelihood` |
| [Neural Magic SparseML](https://github.com/neuralmagic/sparseml) | :heavy_check_mark: | `sparseml` | Any decoder-only AutoModelForCausalLM from [SparseZoo](https://sparsezoo.neuralmagic.com/) or on [HF Hub](https://huggingface.co/neuralmagic). Especially useful for models with quantization like [`zoo:llama2-7b-gsm8k_llama2_pretrain-pruned60_quantized`](https://sparsezoo.neuralmagic.com/models/llama2-7b-gsm8k_llama2_pretrain-pruned60_quantized) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| [Your local inference server!](docs/API_guide.md) | :heavy_check_mark: | `local-completions` or `local-chat-completions` | Support for OpenAI API-compatible servers, with easy customization for other APIs. | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| [Your local inference server!](docs/API_guide.md) | :heavy_check_mark: | `local-completions` or `local-chat-completions` | Support for OpenAI API-compatible servers, with easy customization for other APIs. | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
...
@@ -572,9 +570,19 @@ lm_eval \
...
@@ -572,9 +570,19 @@ lm_eval \
In the stdout, you will find the link to the W&B run page as well as link to the generated report. You can find an example of this workflow in [examples/visualize-wandb.ipynb](examples/visualize-wandb.ipynb), and an example of how to integrate it beyond the CLI.
In the stdout, you will find the link to the W&B run page as well as link to the generated report. You can find an example of this workflow in [examples/visualize-wandb.ipynb](examples/visualize-wandb.ipynb), and an example of how to integrate it beyond the CLI.
## How to Contribute or Learn More?
## Contributing
For more information on the library and how everything fits together, check out all of our [documentation pages](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/docs)! We plan to post a larger roadmap of desired + planned library improvements soon, with more information on how contributors can help.
Check out our [open issues](https://github.com/EleutherAI/lm-evaluation-harness/issues) and feel free to submit pull requests!
For more information on the library and how everything fits together, see our [documentation pages](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/docs).
To get started with development, first clone the repository and install the dev dependencies:
"Model appears to be an instruct variant but chat template is not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
"Model appears to be an instruct or chat variant but chat template is not applied. "