Unverified Commit 7ff58fe1 authored by Leo Gao's avatar Leo Gao Committed by GitHub
Browse files

Merge pull request #166 from jon-tow/remove-unused-imports

Remove unused imports and format imports
parents a69ba385 ddc044eb
import math
from collections import Iterable
from pprint import pprint
import numpy as np
import sacrebleu
......
......@@ -3,6 +3,7 @@ from lm_eval.base import rf
from ..metrics import mean
from . common import HFTask
class ANLIBase(HFTask):
DATASET_PATH = "anli"
DATASET_NAME = None
......
import numpy as np
from lm_eval.base import MultipleChoiceTask
from ..metrics import mean
from . common import HFTask
......
......@@ -8,6 +8,7 @@ from best_download import download_file
ArithmeticDoc = namedtuple('ArithmeticDoc', ['context', 'completion'])
class Arithmetic(Task):
directory = 'data/arithmetic/'
......
import datasets
import numpy as np
import lm_eval.metrics
from ..base import Task
......
import os
import json
import transformers.data.metrics.squad_metrics as squad_metrics
from lm_eval.base import Task, rf, mean
from ..utils import sh
from itertools import zip_longest
import transformers.data.metrics.squad_metrics as squad_metrics
import collections
import datasets
import numpy as np
from lm_eval.base import rf, mean
from . common import HFTask
from tqdm import tqdm
import string, re
class CoQA(Task):
......
from lm_eval.base import Task, rf
from lm_eval.metrics import mean
from lm_eval.utils import sh
from .common import yesno
import abc
import csv
import os
import random
import numpy as np
from lm_eval.base import Task, rf
from lm_eval.metrics import mean
from lm_eval.utils import sh
from .common import yesno
class Ethics(Task):
def download(self):
......
import numpy as np
from lm_eval.base import rf
from ..metrics import mean, matthews_corrcoef, f1_score
from scipy.stats import pearsonr, spearmanr
from tqdm import auto as tqdm_lib
from . common import HFTask, yesno
from ..utils import general_detokenize
......
import json
from lm_eval.base import Task, rf
from lm_eval.metrics import mean, perplexity
from lm_eval.utils import sh
import json
import math
from best_download import download_file
......
import abc
import json
import random
from lm_eval.utils import sh
from lm_eval.metrics import mean
from lm_eval.base import Task, rf
from pathlib import Path
import abc
class Math(Task):
......
from . common import HFTask
from lm_eval.base import mean, rf, MultipleChoiceTask
import re
from lm_eval.base import MultipleChoiceTask
from . common import HFTask
class MathQA(HFTask, MultipleChoiceTask):
DATASET_PATH = "math_qa"
......
import random
from . common import HFTask
from itertools import islice
import random
class NaturalQs(HFTask):
# TODO: naturalqs has a *really* large train set that huggingface just
......
import numpy as np
import json
import random
from .common import HFTask
from .common import HFTask
from lm_eval.base import rf
from ..metrics import mean
......
import os
import numpy as np
from best_download import download_file
from lm_eval.base import MultipleChoiceTask, rf
from lm_eval.metrics import mean
import xml.etree.ElementTree as ET
import random
from best_download import download_file
from lm_eval.base import MultipleChoiceTask
class QA4MRE(MultipleChoiceTask):
YEAR = None
......
import json
import random
import os
from lm_eval.base import Task
from ..utils import sh
......
......@@ -5,11 +5,6 @@ from lm_eval.base import rf
from ..metrics import mean
from . common import HFTask
import os
from functools import reduce
import operator
from tqdm import tqdm
import json
class each:
def __init__(self, f):
......
import json
import random
import os
from lm_eval.base import MultipleChoiceTask, rf
from ..metrics import mean
from tqdm import auto as tqdm_lib
from . common import simple_accuracy_metric
import numpy as np
from ..utils import sh
from lm_eval.base import MultipleChoiceTask
class SATAnalogies(MultipleChoiceTask):
......
import os
import json
from ..utils import sh
from lm_eval.base import MultipleChoiceTask, rf
from ..metrics import mean
import zipfile
from lm_eval.base import MultipleChoiceTask
from best_download import download_file
......
import numpy as np
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
from . common import HFTask, simple_accuracy_metric, yesno
from . common import HFTask
class SQuAD(HFTask):
DATASET_PATH = "squad_v2"
......
import json
import random
from lm_eval.base import Task
from ..utils import sh
import csv
from lm_eval.base import Task
class StoryCloze(Task):
NEEDS_MANUAL_DL = True
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment