Unverified Commit 7ce584bd authored by Jiwung Hyun's avatar Jiwung Hyun Committed by GitHub
Browse files

Add kobest benchmark tasks to eval Korean language task (#329)



* feat: add kobest task
    - kobest-boolq, kobest-wic, kobest-sentineg, kobest-copa, kobest-hellaswag
Co-authored-by: default avatarTaekyoon <tgchoi03@gmail.com>
parent ff2e7aa1
...@@ -51,13 +51,11 @@ from . import blimp ...@@ -51,13 +51,11 @@ from . import blimp
from . import asdiv from . import asdiv
from . import gsm8k from . import gsm8k
from . import storycloze from . import storycloze
from . import kobest
from . import nsmc from . import nsmc
from . import klue from . import klue
from . import korquad from . import korquad
######################################## ########################################
# Translation tasks # Translation tasks
######################################## ########################################
...@@ -303,14 +301,20 @@ TASK_REGISTRY = { ...@@ -303,14 +301,20 @@ TASK_REGISTRY = {
"blimp_wh_vs_that_no_gap_long_distance": blimp.BlimpWhVsThatNoGapLongDistance, "blimp_wh_vs_that_no_gap_long_distance": blimp.BlimpWhVsThatNoGapLongDistance,
"blimp_wh_vs_that_with_gap": blimp.BlimpWhVsThatWithGap, "blimp_wh_vs_that_with_gap": blimp.BlimpWhVsThatWithGap,
"blimp_wh_vs_that_with_gap_long_distance": blimp.BlimpWhVsThatWithGapLongDistance, "blimp_wh_vs_that_with_gap_long_distance": blimp.BlimpWhVsThatWithGapLongDistance,
"klue_sts": klue.STS,
"klue_ynat": klue.YNAT
"nsmc": nsmc.NSMC,
"korquad": korquad.Korquad
# Requires manual download of data. # Requires manual download of data.
# "storycloze_2016": storycloze.StoryCloze2016, # "storycloze_2016": storycloze.StoryCloze2016,
# "storycloze_2018": storycloze.StoryCloze2018, # "storycloze_2018": storycloze.StoryCloze2018,
# "sat": sat.SATAnalogies, # "sat": sat.SATAnalogies,
"klue_sts": klue.STS,
"klue_ynat": klue.YNAT
"nsmc": nsmc.NSMC,
"korquad": korquad.Korquad
"kobest_boolq": kobest.BoolQ,
"kobest_copa": kobest.COPA,
"kobest_wic": kobest.WiC,
"kobest_hellaswag": kobest.HellaSwag,
"kobest_sentineg": kobest.SentiNeg
} }
......
"""
KOBEST
https://arxiv.org/abs/2204.04541
A well-formulated benchmark plays a critical role in spurring advancements
in the natural language processing (NLP) field, as it allows objective and
precise evaluation of diverse models. As modern language models (LMs) have
become more elaborate and sophisticated, more difficult benchmarks that require
linguistic knowledge and reasoning have been proposed. However, most of these
benchmarks only support English, and great effort is necessary to construct
benchmarks for other low resource languages. To this end, we propose a new
benchmark named Korean balanced evaluation of significant tasks (KoBEST),
which consists of five Korean-language downstream tasks. Professional Korean
linguists designed the tasks that require advanced Korean linguistic knowledge.
Moreover, our data is purely annotated by humans and thoroughly reviewed to
guarantee high data quality. We also provide baseline models and human performance
results. Our dataset is available on the Huggingface.
Homepage: https://huggingface.co/datasets/skt/kobest_v1
"""
import numpy as np
from lm_eval.base import MultipleChoiceTask, rf, Task
from lm_eval.metrics import f1_score, macro_f1_score
class BoolQ(Task):
VERSION = 0
DATASET_PATH = "skt/kobest_v1"
DATASET_NAME = "boolq"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
return "{} 질문: {} 답변: ".format(doc["paragraph"], doc["question"])
def doc_to_target(self, doc):
return " {}".format({0: "아니오.", 1: "예."})
def construct_requests(self, doc, ctx):
ll_no, _ = rf.loglikelihood(ctx, " 아니오.")
ll_yes, _ = rf.loglikelihood(ctx, " 예.")
return ll_no, ll_yes
def process_results(self, doc, results):
pred = np.argmax(results)
gold = doc["label"]
return {
"f1": (gold, pred)
}
def higher_is_better(self):
return {
"f1": True
}
def aggregation(self):
return {
"f1": f1_score
}
class COPA(Task):
VERSION = 0
DATASET_PATH = "skt/kobest_v1"
DATASET_NAME = "copa"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
'''
Connector: “왜냐하면” if Question is “원인” else “그래서”
Format: “{Premise} {Connector} {Answer Alternative}”
'''
connector = {
"원인": "왜냐하면",
"결과": "그래서",
}[doc["question"].strip()]
return doc["premise"] + f" {connector}"
def doc_to_target(self, doc):
correct_choice = doc["alternative_1"] if doc["label"] == 0 else doc["alternative_2"]
return " " + correct_choice
def construct_requests(self, doc, ctx):
ll_choice1, _ = rf.loglikelihood(ctx, " "+doc["alternative_1"])
ll_choice2, _ = rf.loglikelihood(ctx, " "+doc["alternative_2"])
return ll_choice1, ll_choice2
def process_results(self, doc, results):
pred = np.argmax(results)
gold = doc["label"]
return {
"f1": (gold, pred)
}
def higher_is_better(self):
return {
"f1": True
}
def aggregation(self):
return {
"f1": f1_score
}
class WiC(Task):
VERSION = 0
DATASET_PATH = "skt/kobest_v1"
DATASET_NAME = "wic"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
return "문장1: {} 문장2: {} 두 문장에서 {}가 같은 뜻으로 쓰였나?".format(doc["context_1"], doc["context_2"], doc["word"])
def doc_to_target(self, doc):
return " {}".format({0: "아니오", 1: "예"})
def construct_requests(self, doc, ctx):
ll_no, _ = rf.loglikelihood(ctx, " 아니오")
ll_yes, _ = rf.loglikelihood(ctx, " 예")
return ll_no, ll_yes
def process_results(self, doc, results):
pred = np.argmax(results)
gold = doc["label"]
return {
"f1": (gold, pred)
}
def higher_is_better(self):
return {
"f1": True
}
def aggregation(self):
return {
"f1": f1_score
}
class HellaSwag(MultipleChoiceTask):
VERSION = 0
DATASET_PATH = "skt/kobest_v1"
DATASET_NAME = "hellaswag"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(map(self._process_doc, self.dataset["train"]))
return self._training_docs
def validation_docs(self):
return map(self._process_doc, self.dataset["validation"])
def test_docs(self):
return map(self._process_doc, self.dataset["test"])
def _process_doc(self, doc):
out_doc = {
"query": "문장: {}".format(doc["context"]),
"choices": [doc["ending_1"], doc["ending_2"], doc["ending_3"], doc["ending_4"]],
"gold": int(doc['label']),
}
return out_doc
def doc_to_text(self, doc):
return doc["query"]
def process_results(self, doc, results):
pred = np.argmax(results)
gold = doc["gold"]
return {
"f1": (gold, pred)
}
def higher_is_better(self):
return {
"f1": True
}
def aggregation(self):
return {
"f1": macro_f1_score
}
class SentiNeg(Task):
VERSION = 0
DATASET_PATH = "skt/kobest_v1"
DATASET_NAME = "sentineg"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
def training_docs(self):
if self._training_docs is None:
self._training_docs = list(self.dataset["train"])
return self._training_docs
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
return "문장: {} 긍부정:".format(doc["sentence"])
def doc_to_target(self, doc):
return " {}".format({0: "부정", 1: "긍정"})
def construct_requests(self, doc, ctx):
ll_no, _ = rf.loglikelihood(ctx, " 부정")
ll_yes, _ = rf.loglikelihood(ctx, " 긍정")
return ll_no, ll_yes
def process_results(self, doc, results):
pred = np.argmax(results)
gold = doc["label"]
return {
"f1": (gold, pred)
}
def higher_is_better(self):
return {
"f1": True
}
def aggregation(self):
return {
"f1": f1_score
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment