Unverified Commit 761f0087 authored by Lintang Sutawika's avatar Lintang Sutawika Committed by GitHub
Browse files

Merge pull request #560 from EleutherAI/dataset-metric-log

Dataset metric log [WIP]
parents 232632c6 ae4d9ed2
......@@ -39,4 +39,4 @@ filter_list:
filter:
- function: "regex"
regex_pattern: "The answer is (\\-?[0-9\\.\\,]+)"
- function: "take_first"
\ No newline at end of file
- function: "take_first"
......@@ -32,4 +32,4 @@ num_fewshot: 5
# filter:
# - function: "regex"
# regex_pattern: "### (\\-?[0-9\\.\\,]+)"
# - function: "take_first"
\ No newline at end of file
# - function: "take_first"
"""
The LAMBADA dataset: Word prediction requiring a broad discourse context∗
https://arxiv.org/pdf/1606.06031.pdf
LAMBADA is a dataset to evaluate the capabilities of computational models for text
understanding by means of a word prediction task. LAMBADA is a collection of narrative
passages sharing the characteristic that human subjects are able to guess their last
word if they are exposed to the whole passage, but not if they only see the last
sentence preceding the target word. To succeed on LAMBADA, computational models
cannot simply rely on local context, but must be able to keep track of information
in the broader discourse.
Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
"""
from lm_eval.api.task import Task
from lm_eval.api.instance import Instance
from lm_eval.api.metrics import mean, perplexity
from lm_eval.api.registry import register_task, register_group
_CITATION = """
@misc{
author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel},
title={The LAMBADA dataset},
DOI={10.5281/zenodo.2630551},
publisher={Zenodo},
year={2016},
month={Aug}
}
"""
class LambadaBase(Task):
VERSION = None
OUTPUT_TYPE = "loglikelihood"
def training_docs(self):
if self.has_training_docs():
return self.dataset["train"]
def validation_docs(self):
if self.has_validation_docs():
return self.dataset["validation"]
def test_docs(self):
if self.has_test_docs():
return self.dataset["test"]
def doc_to_text(self, doc):
return doc["text"].rsplit(" ", 1)[0]
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["text"]
def doc_to_target(self, doc):
return " " + doc["text"].rsplit(" ", 1)[1]
def construct_requests(self, doc, ctx, **kwargs):
return Instance(
request_type=self.OUTPUT_TYPE,
doc=doc,
arguments=(ctx, self.doc_to_target(doc)),
**kwargs
)
def process_results(self, doc, results):
# TODO: this ^ is a hack. filters should make it so that we only have one response per request that we score
results = results[
0
] # TODO: recheck this. currently a list of [(ll, is_greedy)] is passed in
ll, is_greedy = results
return {"ppl": ll, "acc": int(is_greedy)}
def aggregation(self):
return {"ppl": perplexity, "acc": mean}
def higher_is_better(self):
return {"ppl": False, "acc": True}
@register_task("lambada_standard")
class LambadaStandard(LambadaBase):
"""The LAMBADA task using the standard original LAMBADA dataset."""
VERSION = "2.0"
DATASET_PATH = "lambada"
def has_training_docs(self):
return False
def has_validation_docs(self):
return True
def has_test_docs(self):
return True
@register_task("lambada_openai")
class LambadaOpenAI(LambadaBase):
"""The LAMBADA task using the LAMBADA OpenAI dataset, a modified version of the
original LAMBADA dataset created by OpenAI for evaluating their GPT-2 model.
Reference: https://github.com/openai/gpt-2/issues/131#issuecomment-497136199
"""
VERSION = "2.0"
DATASET_PATH = "EleutherAI/lambada_openai"
def has_training_docs(self):
return False
def has_validation_docs(self):
return False
def has_test_docs(self):
return True
# LAMBADA
### Paper
The LAMBADA dataset: Word prediction requiring a broad discourse context
The LAMBADA dataset: Word prediction requiring a broad discourse context
https://arxiv.org/pdf/1606.06031.pdf
LAMBADA is a dataset to evaluate the capabilities of computational models for text
......@@ -23,4 +23,4 @@ Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
publisher={Zenodo},
year={2016},
month={Aug}
}
\ No newline at end of file
}
"""
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
https://arxiv.org/pdf/2101.00027.pdf
The Pile is a 825 GiB diverse, open source language modelling data set that consists
of 22 smaller, high-quality datasets combined together. To score well on Pile
BPB (bits per byte), a model must be able to understand many disparate domains
including books, github repositories, webpages, chat logs, and medical, physics,
math, computer science, and philosophy papers.
Homepage: https://pile.eleuther.ai/
"""
from lm_eval.api.task import PerplexityTask
from lm_eval.api.registry import register_task, register_group
_CITATION = """
@article{pile,
title={The {P}ile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and Presser, Shawn and Leahy, Connor},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
"""
class PilePerplexityTask(PerplexityTask):
VERSION = "2.0"
DATASET_PATH = "EleutherAI/the_pile"
DATASET_NAME = None
def has_training_docs(self):
return False
def test_docs(self):
for doc in self.dataset["train"].select(range(100)):
yield doc
def has_validation_docs(self):
return False
def has_test_docs(self):
return True
def doc_to_target(self, doc):
return doc["text"]
# def validation_docs(self):
# for doc in self.dataset["validation"]:
# yield doc["text"]
# def test_docs(self):
# for doc in self.dataset["test"]:
# yield doc["text"]
class PileArxiv(PilePerplexityTask):
DATASET_NAME = "pile_arxiv"
class PileBooks3(PilePerplexityTask):
DATASET_NAME = "pile_books3"
class PileBookCorpus2(PilePerplexityTask):
DATASET_NAME = "pile_bookcorpus2"
class PileDmMathematics(PilePerplexityTask):
DATASET_NAME = "pile_dm-mathematics"
@register_task("pile_enron")
class PileEnron(PilePerplexityTask):
DATASET_NAME = "enron_emails"
class PileEuroparl(PilePerplexityTask):
DATASET_NAME = "pile_europarl"
class PileFreeLaw(PilePerplexityTask):
DATASET_NAME = "pile_freelaw"
class PileGithub(PilePerplexityTask):
DATASET_NAME = "pile_github"
class PileGutenberg(PilePerplexityTask):
DATASET_NAME = "pile_gutenberg"
class PileHackernews(PilePerplexityTask):
DATASET_NAME = "pile_hackernews"
class PileNIHExporter(PilePerplexityTask):
DATASET_NAME = "pile_nih-exporter"
class PileOpenSubtitles(PilePerplexityTask):
DATASET_NAME = "pile_opensubtitles"
class PileOpenWebText2(PilePerplexityTask):
DATASET_NAME = "pile_openwebtext2"
class PilePhilPapers(PilePerplexityTask):
DATASET_NAME = "pile_philpapers"
class PilePileCc(PilePerplexityTask):
DATASET_NAME = "pile_pile-cc"
class PilePubmedAbstracts(PilePerplexityTask):
DATASET_NAME = "pile_pubmed-abstracts"
class PilePubmedCentral(PilePerplexityTask):
DATASET_NAME = "pile_pubmed-central"
class PileStackExchange(PilePerplexityTask):
DATASET_NAME = "pile_stackexchange"
class PileUspto(PilePerplexityTask):
DATASET_NAME = "pile_upsto"
class PileUbuntuIrc(PilePerplexityTask):
DATASET_NAME = "pile_ubuntu-irc"
class PileWikipedia(PilePerplexityTask):
DATASET_NAME = "pile_wikipedia"
class PileYoutubeSubtitles(PilePerplexityTask):
DATASET_NAME = "pile_youtubesubtitles"
......@@ -20,4 +20,4 @@ Homepage: https://pile.eleuther.ai/
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
\ No newline at end of file
```
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
......@@ -19,4 +19,4 @@ metric_list:
higher_is_better: false
- metric: bits_per_byte
aggregation: bits_per_byte
higher_is_better: false
\ No newline at end of file
higher_is_better: false
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment