Commit 56abc3a1 authored by lintangsutawika's avatar lintangsutawika
Browse files

Merge branch 'main' of https://github.com/EleutherAI/lm-evaluation-harness into alt_worlds

parents 1b7d57cf aa61f940
......@@ -29,7 +29,7 @@ jobs:
cache: pip
cache-dependency-path: setup.py
- name: Install dependencies
run: pip install -e '.[linting,testing]' --extra-index-url https://download.pytorch.org/whl/cpu
run: pip install -e '.[linting,testing]' --extra-index-url https://download.pytorch.org/whl/cpu ; export SKIP=no-commit-to-branch # env var deactivates --no-commit-to-branch
- name: Pre-Commit
uses: pre-commit/action@v3.0.0
- name: Lint with pylint
......
......@@ -85,7 +85,7 @@ lm_eval --model hf \
--batch_size 8
```
Models that are loaded via both `transformers.AutoModelForCausalLM` (autoregressive, decoder-only GPT style models) and `transformers.AutoModelForSeq2SeqLM` (such as encoder-decoder models like T5) in Huggingface are supporteded.
Models that are loaded via both `transformers.AutoModelForCausalLM` (autoregressive, decoder-only GPT style models) and `transformers.AutoModelForSeq2SeqLM` (such as encoder-decoder models like T5) in Huggingface are supported.
Batch size selection can be automated by setting the ```--batch_size``` flag to ```auto```. This will perform automatic detection of the largest batch size that will fit on your device. On tasks where there is a large difference between the longest and shortest example, it can be helpful to periodically recompute the largest batch size, to gain a further speedup. To do this, append ```:N``` to above flag to automatically recompute the largest batch size ```N``` times. For example, to recompute the batch size 4 times, the command would be:
......@@ -149,7 +149,7 @@ Our library also supports the evaluation of models served via several commercial
To call a hosted model, use:
```bash
export OPENAI_API_SECRET_KEY=YOUR_KEY_HERE
export OPENAI_API_KEY=YOUR_KEY_HERE
lm_eval --model openai-completions \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag
......
import os
import time
from typing import List, Tuple
from typing import List, Tuple, Optional
import copy
from collections import defaultdict
......@@ -11,7 +11,7 @@ from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
def get_result(response: dict, ctxlen: int) -> Tuple[float, bool]:
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
"""Process results from OpenAI API response.
:param response: dict
......@@ -25,12 +25,12 @@ def get_result(response: dict, ctxlen: int) -> Tuple[float, bool]:
whether argmax matches given continuation exactly
"""
is_greedy = True
logprobs = response["logprobs"]["token_logprobs"]
logprobs = response.logprobs.token_logprobs
continuation_logprobs = sum(logprobs[ctxlen:])
for i in range(ctxlen, len(response["logprobs"]["tokens"])):
token = response["logprobs"]["tokens"][i]
top_tokens = response["logprobs"]["top_logprobs"][i]
for i in range(ctxlen, len(response.logprobs.token_logprobs)):
token = response.logprobs.token_logprobs[i]
top_tokens = response.logprobs.top_logprobs[i]
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
if top_token != token:
is_greedy = False
......@@ -55,8 +55,8 @@ please install these via `pip install lm-eval[openai]` or `pip install -e .[open
backoff_time = 3
while True:
try:
return openai.Completions.create(**kwargs)
except openai.error.OpenAIError:
return openai.completions.create(**kwargs)
except openai.OpenAIError:
import traceback
traceback.print_exc()
......@@ -64,15 +64,19 @@ please install these via `pip install lm-eval[openai]` or `pip install -e .[open
backoff_time *= 1.5
@register_model("gooseai")
@register_model("openai-completions")
class OpenaiCompletionsLM(LM):
REQ_CHUNK_SIZE = 20
_DEFAULT_MAX_LENGTH = 2048
def __init__(
self,
engine: str = "text-davinci-003",
model: str = "text-davinci-003",
truncate: bool = False,
max_gen_toks: int = 256,
batch_size: int = 1,
seed: int = 1234,
max_length: Optional[int] = None,
) -> None:
"""
......@@ -82,6 +86,7 @@ class OpenaiCompletionsLM(LM):
Truncate input if too long (if False and input is too long, throw error)
"""
super().__init__()
self.seed = seed
try:
import openai, tiktoken # noqa: E401
except ModuleNotFoundError:
......@@ -89,14 +94,16 @@ class OpenaiCompletionsLM(LM):
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
)
self.engine = engine
self.tokenizer = tiktoken.encoding_for_model(self.engine)
self.model = model
self.tokenizer = tiktoken.encoding_for_model(self.model)
self.vocab_size = self.tokenizer.n_vocab
self.truncate = truncate
self.end_of_text_token_id = self.tokenizer.eot_token
self._max_gen_toks = max_gen_toks
self._max_length = max_length
# Read from environment variable OPENAI_API_SECRET_KEY
openai.api_key = os.environ["OPENAI_API_SECRET_KEY"]
openai.api_key = os.environ["OPENAI_API_KEY"]
@property
def eot_token_id(self):
......@@ -104,12 +111,14 @@ class OpenaiCompletionsLM(LM):
@property
def max_length(self) -> int:
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
return 2048
if self._max_length:
return self._max_length
else:
return self._DEFAULT_MAX_LENGTH
@property
def max_gen_toks(self) -> int:
return 256
return self._max_gen_toks
@property
def batch_size(self):
......@@ -187,12 +196,13 @@ class OpenaiCompletionsLM(LM):
ctxlens.append(ctxlen)
response = oa_completion(
engine=self.engine,
model=self.model,
prompt=inps,
echo=True,
max_tokens=0,
temperature=0.0,
logprobs=10,
seed=self.seed,
)
for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
......@@ -242,21 +252,22 @@ class OpenaiCompletionsLM(LM):
inp = context_enc[-(self.max_length - self.max_gen_toks) :]
inps.append(inp)
until = request_args.get("until", ["<|endoftext|>"])
until = request_args.pop("until", ["<|endoftext|>"])
request_args.pop("do_sample", None)
request_args["temperature"] = request_args.get("temperature", 0)
response = oa_completion(
engine=self.engine,
model=self.model,
prompt=inps,
max_tokens=self.max_gen_toks,
temperature=0.0,
logprobs=10,
stop=until,
seed=self.seed,
**request_args,
)
for resp, (context, args_) in zip(response.choices, chunk):
s = resp["text"]
s = getattr(resp, "text")
until_ = args_.get("until", ["<|endoftext|>"])
until_ = until
for term in until_:
if len(term) > 0:
......
......@@ -139,7 +139,6 @@ please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
generate: bool = False,
max_tokens: int = None,
stop: Optional[List[str]] = None,
use_tqdm=True,
**kwargs,
):
if "do_sample" in kwargs.keys():
......@@ -169,7 +168,7 @@ please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
outputs = self.model.generate(
prompt_token_ids=requests,
sampling_params=sampling_params,
use_tqdm=use_tqdm,
use_tqdm=True if self.batch_size == "auto" else False,
)
return outputs
......
# IFEval
### Paper
Title: Instruction-Following Evaluation for Large Language Models
Abstract: https://arxiv.org/abs/2311.07911
One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at https://github.com/google-research/google-research/tree/master/instruction_following_eval
Homepage: https://github.com/google-research/google-research/tree/master/instruction_following_eval
### Citation
```
@article{zhou2023instructionfollowing,
title={Instruction-Following Evaluation for Large Language Models},
author={Jeffrey Zhou and Tianjian Lu and Swaroop Mishra and Siddhartha Brahma and Sujoy Basu and Yi Luan and Denny Zhou and Le Hou},
journal={arXiv preprint arXiv:2311.07911},
year={2023},
}
```
### Groups and Tasks
#### Groups
* Not part of a group yet
#### Tasks
* `ifeval`
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
task: ifeval
dataset_path: wis-k/instruction-following-eval
dataset_name: null
output_type: generate_until
test_split: train
num_fewshot: 0
doc_to_text: prompt
doc_to_target: 0
generation_kwargs:
until: []
do_sample: false
temperature: 0.0
max_gen_toks: 1280
process_results: !function utils.process_results
metric_list:
- metric: prompt_level_strict_acc
aggregation: mean
higher_is_better: true
- metric: inst_level_strict_acc
aggregation: !function utils.agg_inst_level_acc
higher_is_better: true
- metric: prompt_level_loose_acc
aggregation: mean
higher_is_better: true
- metric: inst_level_loose_acc
aggregation: !function utils.agg_inst_level_acc
higher_is_better: true
metadata:
- version: 1.0
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library of instructions."""
import collections
import json
import logging
import random
import re
import string
from typing import Dict, Optional, Sequence, Union
import langdetect
from lm_eval.tasks.ifeval import instructions_util
logger = logging.getLogger(__name__)
_InstructionArgsDtype = Optional[Dict[str, Union[int, str, Sequence[str]]]]
_LANGUAGES = instructions_util.LANGUAGE_CODES
# The relational operation for comparison.
_COMPARISON_RELATION = ("less than", "at least")
# The maximum number of sentences.
_MAX_NUM_SENTENCES = 20
# The number of placeholders.
_NUM_PLACEHOLDERS = 4
# The number of bullet lists.
_NUM_BULLETS = 5
# The options of constrained response.
_CONSTRAINED_RESPONSE_OPTIONS = (
"My answer is yes.",
"My answer is no.",
"My answer is maybe.",
)
# The options of starter keywords.
_STARTER_OPTIONS = (
"I would say",
"My answer is",
"I believe",
"In my opinion",
"I think",
"I reckon",
"I feel",
"From my perspective",
"As I see it",
"According to me",
"As far as I'm concerned",
"To my understanding",
"In my view",
"My take on it is",
"As per my perception",
)
# The options of ending keywords.
# TODO(jeffreyzhou) add more ending options
_ENDING_OPTIONS = ("Any other questions?", "Is there anything else I can help with?")
# The number of highlighted sections.
_NUM_HIGHLIGHTED_SECTIONS = 4
# The section spliter.
_SECTION_SPLITER = ("Section", "SECTION")
# The number of sections.
_NUM_SECTIONS = 5
# The number of paragraphs.
_NUM_PARAGRAPHS = 5
# The postscript marker.
_POSTSCRIPT_MARKER = ("P.S.", "P.P.S")
# The number of keywords.
_NUM_KEYWORDS = 2
# The occurrences of a single keyword.
_KEYWORD_FREQUENCY = 3
# The occurrences of a single letter.
_LETTER_FREQUENCY = 10
# The occurrences of words with all capital letters.
_ALL_CAPITAL_WORD_FREQUENCY = 20
# The number of words in the response.
_NUM_WORDS_LOWER_LIMIT = 100
_NUM_WORDS_UPPER_LIMIT = 500
class Instruction:
"""An instruction template."""
def __init__(self, instruction_id):
self.id = instruction_id
def build_description(self, **kwargs):
raise NotImplementedError("`build_description` not implemented.")
def get_instruction_args(self):
raise NotImplementedError("`get_instruction_args` not implemented.")
def get_instruction_args_keys(self):
raise NotImplementedError("`get_instruction_args_keys` not implemented.")
def check_following(self, value):
raise NotImplementedError("`check_following` not implemented.")
class ResponseLanguageChecker(Instruction):
"""Check the language of the entire response."""
def build_description(self, *, language=None):
"""Build the instruction description.
Args:
language: A string representing the expected language of the response. The
language has to comply to the 97 types defined in
`langid.py` (https://pypi.org/project/langid/1.1.5/), which follows
ISO 639-1 codes (https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes);
for example, `en` for English, `zh` for Chinese, `fr` for French.
Returns:
A string representing the instruction description.
"""
self._language = language
if self._language is None:
self._language = random.choice(list(_LANGUAGES.keys()))
# TODO(tianjianlu): opens the description generation to more choices.
self._description_pattern = (
"Your ENTIRE response should be in {language} language, no other "
+ "language is allowed."
)
return self._description_pattern.format(language=_LANGUAGES[self._language])
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"language": self._language}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["language"]
def check_following(self, value):
"""Check if the language of the entire response follows the instruction.
Args:
value: A string representing the response.
Returns:
True if the language of `value` follows instruction; otherwise False.
"""
assert isinstance(value, str)
try:
return langdetect.detect(value) == self._language
except langdetect.LangDetectException as e:
# Count as instruction is followed.
logging.error(
"Unable to detect language for text %s due to %s", value, e
) # refex: disable=pytotw.037
return True
class NumberOfSentences(Instruction):
"""Check the number of sentences."""
def build_description(self, *, num_sentences=None, relation=None):
"""Build the instruction description.
Args:
num_sentences: An integer specifying the number of sentences as a
threshold.
relation: A string in (`less than`, `at least`), defining the relational
operator for comparison.
Two relational comparisons are supported for now:
if 'less than', the actual number of sentences < the threshold;
if 'at least', the actual number of sentences >= the threshold.
Returns:
A string representing the instruction description.
"""
# The number of sentences as a threshold for comparison.
self._num_sentences_threshold = num_sentences
if self._num_sentences_threshold is None or self._num_sentences_threshold < 0:
self._num_sentences_threshold = random.randint(1, _MAX_NUM_SENTENCES)
if relation is None:
self._comparison_relation = random.choice(_COMPARISON_RELATION)
elif relation not in _COMPARISON_RELATION:
raise ValueError(
"The supported relation for comparison must be in "
f"{_COMPARISON_RELATION}, but {relation} is given."
)
else:
self._comparison_relation = relation
self._description_pattern = (
"Your response should contain {relation} {num_sentences} sentences."
)
return self._description_pattern.format(
relation=self._comparison_relation,
num_sentences=self._num_sentences_threshold,
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"num_sentences": self._num_sentences_threshold,
"relation": self._comparison_relation,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_sentences", "relation"]
def check_following(self, value):
"""Check if the number of sentences follows the instruction.
Args:
value: A string representing the response.
Returns:
True if the response follows the instruction.
Raise:
ValueError if the string in `instruction_args` is not in
[`less_than`, `at_least`].
"""
num_sentences = instructions_util.count_sentences(value)
if self._comparison_relation == _COMPARISON_RELATION[0]:
return num_sentences < self._num_sentences_threshold
elif self._comparison_relation == _COMPARISON_RELATION[1]:
return num_sentences >= self._num_sentences_threshold
class PlaceholderChecker(Instruction):
"""Check the placeholders in template writing."""
def build_description(self, *, num_placeholders=None):
"""Build the instruction description.
Args:
num_placeholders: An integer denoting the minimum number of
placeholders required in the response.
Returns:
A string representing the instruction description.
"""
self._num_placeholders = num_placeholders
if self._num_placeholders is None or self._num_placeholders < 0:
self._num_placeholders = random.randint(1, _NUM_PLACEHOLDERS)
self._description_pattern = (
"The response must contain at least {num_placeholders} placeholders "
+ "represented by square brackets, such as [address]."
)
return self._description_pattern.format(num_placeholders=self._num_placeholders)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"num_placeholders": self._num_placeholders}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_placeholders"]
def check_following(self, value):
"""Check if the number of placeholders follows the instruction.
Args:
value: A string representing the response.
Returns:
True if the actual number of placeholders in the response is greater than
or equal to `num_placeholders`; otherwise, False.
"""
placeholders = re.findall(r"\[.*?\]", value)
num_placeholders = len(placeholders)
return num_placeholders >= self._num_placeholders
class BulletListChecker(Instruction):
"""Checks the bullet list in the prompt."""
def build_description(self, *, num_bullets=None):
"""Build the instruction description.
Args:
num_bullets: An integer specifying the exact number of bullet lists
that is required to appear in the response.
Returns:
A string representing the instruction description.
"""
self._num_bullets = num_bullets
if self._num_bullets is None or self._num_bullets < 0:
self._num_bullets = random.randint(1, _NUM_BULLETS)
self._description_pattern = (
"Your answer must contain exactly {num_bullets} bullet points. "
+ "Use the markdown bullet points such as:\n"
+ "* This is point 1. \n"
+ "* This is point 2"
)
return self._description_pattern.format(num_bullets=self._num_bullets)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"num_bullets": self._num_bullets}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_bullets"]
def check_following(self, value):
r"""Check if the number of bullet lists meets the requirement.
Args:
value: A string representing the response. The response is expected to
contain some bullet lists that start with `\*`.
Returns:
True if the actual number of bullet lists in the response meets the
requirement.
"""
bullet_lists = re.findall(r"^\s*\*[^\*].*$", value, flags=re.MULTILINE)
bullet_lists_2 = re.findall(r"^\s*-.*$", value, flags=re.MULTILINE)
num_bullet_lists = len(bullet_lists) + len(bullet_lists_2)
return num_bullet_lists == self._num_bullets
class ConstrainedResponseChecker(Instruction):
"""Checks the constrained response."""
def build_description(self):
"""Build the instruction description."""
# A sequence of string(s) representing the options of the expected response.
self._constrained_responses = _CONSTRAINED_RESPONSE_OPTIONS
self._description_pattern = (
"Answer with one of the following options: {response_options}"
)
return self._description_pattern.format(
response_options=self._constrained_responses
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks if the response matches the constrained options.
Args:
value: A string representing the response.
Returns:
True if the actual response contains one of the options in the constrained
responses; otherwise False.
"""
value = value.strip()
for constrained_response in self._constrained_responses:
if constrained_response in value:
return True
return False
class ConstrainedStartChecker(Instruction):
"""Checks the response start."""
def build_description(self, *, starter=None):
"""Build the instruction description.
Args:
starter: A string representing the keyward that the response should start
with.
Returns:
A string representing the instruction description.
"""
self._starter = starter.strip() if isinstance(starter, str) else starter
if self._starter is None:
self._starter = random.choice(_STARTER_OPTIONS)
self._description_pattern = (
"During the conversation, when it is your turn, "
+ "please always start with {starter}"
)
return self._description_pattern.format(starter=self._starter)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"starter": self._starter}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["starter"]
def check_following(self, value):
"""Checks if the response starts with the constrained keyword or phrase.
Args:
value: A string representing the response.
Returns:
True if the response starts with the given phrase or keyword that is
contained in `instruction_args`; otherwise, False.
"""
response_pattern = r"^\s*" + self._starter + r".*$"
response_with_constrained_start = re.search(
response_pattern, value, flags=re.MULTILINE
)
return True if response_with_constrained_start else False
class HighlightSectionChecker(Instruction):
"""Checks the highlighted section."""
def build_description(self, *, num_highlights=None):
"""Build the instruction description.
Args:
num_highlights: An integer specifying the minimum number of highlighted
sections.
Returns:
A string representing the instruction description.
"""
self._num_highlights = num_highlights
if self._num_highlights is None or self._num_highlights < 0:
self._num_highlights = random.randint(1, _NUM_HIGHLIGHTED_SECTIONS)
self._description_pattern = (
"Highlight at least {num_highlights} sections in your answer with "
+ "markdown, i.e. *highlighted section*."
)
return self._description_pattern.format(num_highlights=self._num_highlights)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"num_highlights": self._num_highlights}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_highlights"]
def check_following(self, value):
"""Checks if the number of highlighted sections meets the requirement.
Args:
value: a string repesenting the response. The response is expected to
contain highlighted sections in the format of *highlighted*.
Returns:
True if the actual number of highlighted sections in the format of
*highlighed sections* meets the minimum requirement; otherwise False.
"""
num_highlights = 0
highlights = re.findall(r"\*[^\n\*]*\*", value)
double_highlights = re.findall(r"\*\*[^\n\*]*\*\*", value)
for highlight in highlights:
if highlight.strip("*").strip():
num_highlights += 1
for highlight in double_highlights:
if highlight.removeprefix("**").removesuffix("**").strip():
num_highlights += 1
return num_highlights >= self._num_highlights
class SectionChecker(Instruction):
"""Checks the sections."""
def build_description(self, *, section_spliter=None, num_sections=None):
"""Build the instruction description.
Args:
section_spliter: A string represents the section spliter keyword that
marks a new section, i.e., `Section` or `SECTION`.
num_sections: An integer specifying the number of sections.
Returns:
A string representing the instruction description.
"""
self._section_spliter = (
section_spliter.strip()
if isinstance(section_spliter, str)
else section_spliter
)
if self._section_spliter is None:
self._section_spliter = random.choice(_SECTION_SPLITER)
self._num_sections = num_sections
if self._num_sections is None or self._num_sections < 0:
self._num_sections = random.randint(1, _NUM_SECTIONS)
self._description_pattern = (
"Your response must have {num_sections} sections. Mark the beginning "
+ "of each section with {section_spliter} X, such as:\n"
+ "{section_spliter} 1\n"
+ "[content of section 1]\n"
+ "{section_spliter} 2\n"
+ "[content of section 2]"
)
return self._description_pattern.format(
num_sections=self._num_sections, section_spliter=self._section_spliter
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"section_spliter": self._section_spliter,
"num_sections": self._num_sections,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["section_spliter", "num_sections"]
def check_following(self, value):
"""Checks the response contains multiple sections.
Args:
value: A string representing the response. The response is expected
to contain multiple sections (number of sections is greater than 1).
A new section starts with `Section 1`, where the number denotes the
section index.
Returns:
True if the number of sections in the response is greater than or equal to
the minimum number of sections; otherwise, False.
"""
section_splitter_patten = r"\s?" + self._section_spliter + r"\s?\d+\s?"
sections = re.split(section_splitter_patten, value)
num_sections = len(sections) - 1
return num_sections >= self._num_sections
class ParagraphChecker(Instruction):
"""Checks the paragraphs."""
def build_description(self, *, num_paragraphs=None):
"""Build the instruction description.
Args:
num_paragraphs: An integer specifying the number of paragraphs.
Returns:
A string representing the instruction description.
"""
self._num_paragraphs = num_paragraphs
if self._num_paragraphs is None or self._num_paragraphs < 0:
self._num_paragraphs = random.randint(1, _NUM_PARAGRAPHS)
self._description_pattern = (
"There should be {num_paragraphs} paragraphs. "
+ "Paragraphs are separated with the markdown divider: ***"
)
return self._description_pattern.format(num_paragraphs=self._num_paragraphs)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"num_paragraphs": self._num_paragraphs}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_paragraphs"]
def check_following(self, value):
"""Checks the response contains required number of paragraphs.
Args:
value: A string representing the response. The response may contain
paragraphs that are separated by the markdown divider: `***`.
Returns:
True if the actual number of paragraphs is the same as required;
otherwise, False.
"""
paragraphs = re.split(r"\s?\*\*\*\s?", value)
num_paragraphs = len(paragraphs)
for index, paragraph in enumerate(paragraphs):
if not paragraph.strip():
if index == 0 or index == len(paragraphs) - 1:
num_paragraphs -= 1
else:
return False
return num_paragraphs == self._num_paragraphs
class PostscriptChecker(Instruction):
"""Checks the postscript."""
def build_description(self, *, postscript_marker=None):
"""Build the instruction description.
Args:
postscript_marker: A string containing the keyword that marks the start
of the postscript section.
Returns:
A string representing the instruction description.
"""
self._postscript_marker = (
postscript_marker.strip()
if isinstance(postscript_marker, str)
else postscript_marker
)
if self._postscript_marker is None:
self._postscript_marker = random.choice(_POSTSCRIPT_MARKER)
self._description_pattern = (
"At the end of your response, please explicitly add a postscript "
+ "starting with {postscript}"
)
return self._description_pattern.format(postscript=self._postscript_marker)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"postscript_marker": self._postscript_marker}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["postscript_marker"]
def check_following(self, value):
"""Checks if the response follows the postscript format.
Args:
value: a string representing the response. The response is expected to
contain a postscript section.
Returns:
True if the response contains a postscript section starting with
the keyword containing in the `instruction_args`; otherwise False.
"""
value = value.lower()
if self._postscript_marker == "P.P.S":
postscript_pattern = r"\s*p\.\s?p\.\s?s.*$"
elif self._postscript_marker == "P.S.":
postscript_pattern = r"\s*p\.\s?s\..*$"
else:
postscript_pattern = r"\s*" + self._postscript_marker.lower() + r".*$"
postscript = re.findall(postscript_pattern, value, flags=re.MULTILINE)
return True if postscript else False
class RephraseChecker(Instruction):
"""Checks the repharse."""
def build_description(self, *, original_message):
"""Build the instruction description.
Args:
original_message: A string representing the original message. The
rephrased response should only change its words/sentences in between
its two asterisks, for example, *change me*. Both original and rephrased
messages should contain the changes in the form of *change me*.
Returns:
A string representing the instruction description.
"""
if not self.is_change(original_message):
raise ValueError(
f"Message {original_message} does not contain changes "
"in the form of *change me*."
)
self._reference_without_change = original_message
self._description = (
"Rephrasing: Your rephrased response should only"
+ "change the words/sentences in between two asterisks"
+ "such as *change me*."
)
return self._description
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"original_message": self._reference_without_change}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["original_message"]
def check_following(self, value):
r"""Checks if the rephrasing follows the instruction.
Args:
value: A string representing the response, which is expected to rephras
the string of `instruction_args`.
Returns:
True if `value` and `instruction_args` only differ by the words/sentences
in between two asterisks such as *change me*; otherwise, False.
"""
if not self.is_change(value):
raise ValueError(
f"value {value} does not contain " "changes in the form of *change me*."
)
response_without_changes = self.strip_changes(value)
reference_without_changes = self.strip_changes(self._reference_without_change)
return response_without_changes == reference_without_changes
def is_change(self, response):
"""Check if there is change in the response in the form of *change me*."""
return re.search(r"\*.*\*", response)
def strip_changes(self, response):
"""Strips off the changes."""
return re.sub(r"\*.*\*", "", response)
class KeywordChecker(Instruction):
"""Check the exisitence of certain keywords."""
def build_description(self, *, keywords=None):
"""Build the instruction description.
Args:
keywords: A sequence of strings representing the keywords that are
expected in the response.
Returns:
A string representing the instruction description.
"""
if not keywords:
self._keywords = instructions_util.generate_keywords(
num_keywords=_NUM_KEYWORDS
)
else:
self._keywords = keywords
self._keywords = sorted(self._keywords)
self._description_pattern = "Include keywords {keywords} in the response."
return self._description_pattern.format(keywords=self._keywords)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"keywords": self._keywords}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["keywords"]
def check_following(self, value):
"""Check if the response contain the expected keywords."""
for keyword in self._keywords:
if not re.search(keyword, value, flags=re.IGNORECASE):
return False
return True
class KeywordFrequencyChecker(Instruction):
"""Check the keyword frequency."""
def build_description(self, *, keyword=None, frequency=None, relation=None):
"""Build the instruction description.
Args:
keyword: A string representing a keyword that is expected in the response.
frequency: An integer specifying the number of times `keyword` is expected
to appear in the response.
relation: A string in (`less than`, `at least`), defining the relational
operator for comparison.
Two relational comparisons are supported for now:
if 'less than', the actual number of occurrences < frequency;
if 'at least', the actual number of occurrences >= frequency.
Returns:
A string representing the instruction description.
"""
if not keyword:
self._keyword = instructions_util.generate_keywords(num_keywords=1)[0]
else:
self._keyword = keyword.strip()
self._frequency = frequency
if self._frequency is None or self._frequency < 0:
self._frequency = random.randint(1, _KEYWORD_FREQUENCY)
if relation is None:
self._comparison_relation = random.choice(_COMPARISON_RELATION)
elif relation not in _COMPARISON_RELATION:
raise ValueError(
"The supported relation for comparison must be in "
f"{_COMPARISON_RELATION}, but {relation} is given."
)
else:
self._comparison_relation = relation
self._description_pattern = (
"In your response, the word {keyword} should appear {relation} "
+ "{frequency} times."
)
return self._description_pattern.format(
keyword=self._keyword,
relation=self._comparison_relation,
frequency=self._frequency,
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"keyword": self._keyword,
"frequency": self._frequency,
"relation": self._comparison_relation,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["keyword", "frequency", "relation"]
def check_following(self, value):
"""Checks if the response contain the keyword with required frequency."""
actual_occurrences = len(re.findall(self._keyword, value, flags=re.IGNORECASE))
if self._comparison_relation == _COMPARISON_RELATION[0]:
return actual_occurrences < self._frequency
elif self._comparison_relation == _COMPARISON_RELATION[1]:
return actual_occurrences >= self._frequency
class NumberOfWords(Instruction):
"""Checks the number of words."""
def build_description(self, *, num_words=None, relation=None):
"""Build the instruction description.
Args:
num_words: An integer specifying the number of words contained in the
response.
relation: A string in (`less than`, `at least`), defining the relational
operator for comparison.
Two relational comparisons are supported for now:
if 'less than', the actual number of words < num_words;
if 'at least', the actual number of words >= num_words.
Returns:
A string representing the instruction description.
"""
self._num_words = num_words
if self._num_words is None or self._num_words < 0:
self._num_words = random.randint(
_NUM_WORDS_LOWER_LIMIT, _NUM_WORDS_UPPER_LIMIT
)
if relation is None:
self._comparison_relation = random.choice(_COMPARISON_RELATION)
elif relation not in _COMPARISON_RELATION:
raise ValueError(
"The supported relation for comparison must be in "
f"{_COMPARISON_RELATION}, but {relation} is given."
)
else:
self._comparison_relation = relation
self._description_pattern = "Answer with {relation} {num_words} words."
return self._description_pattern.format(
relation=self._comparison_relation, num_words=self._num_words
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"num_words": self._num_words, "relation": self._comparison_relation}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_words", "relation"]
def check_following(self, value):
"""Checks if the response contains the expected number of words."""
num_words = instructions_util.count_words(value)
if self._comparison_relation == _COMPARISON_RELATION[0]:
return num_words < self._num_words
elif self._comparison_relation == _COMPARISON_RELATION[1]:
return num_words >= self._num_words
class JsonFormat(Instruction):
"""Check the Json format."""
def build_description(self):
self._description_pattern = (
"Entire output should be wrapped in JSON format. You can use markdown"
" ticks such as ```."
)
return self._description_pattern
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
value = (
value.strip()
.removeprefix("```json")
.removeprefix("```Json")
.removeprefix("```JSON")
.removeprefix("```")
.removesuffix("```")
.strip()
)
try:
json.loads(value)
except ValueError:
return False
return True
class ParagraphFirstWordCheck(Instruction):
"""Check the paragraph and the first word of the nth paragraph."""
def build_description(
self, num_paragraphs=None, nth_paragraph=None, first_word=None
):
r"""Build the instruction description.
Args:
num_paragraphs: An integer indicating the number of paragraphs expected
in the response. A paragraph is a subset of the string that is
expected to be separated by '\n\n'.
nth_paragraph: An integer indicating the paragraph number that we look at.
Note that n starts from 1.
first_word: A string that represent the first word of the bth paragraph.
Returns:
A string representing the instruction description.
"""
self._num_paragraphs = num_paragraphs
if self._num_paragraphs is None or self._num_paragraphs < 0:
self._num_paragraphs = random.randint(1, _NUM_PARAGRAPHS)
self._nth_paragraph = nth_paragraph
if (
self._nth_paragraph is None
or self._nth_paragraph <= 0
or self._nth_paragraph > self._num_paragraphs
):
self._nth_paragraph = random.randint(1, self._num_paragraphs + 1)
self._first_word = first_word
if self._first_word is None:
self._first_word = instructions_util.generate_keywords(num_keywords=1)[0]
self._first_word = self._first_word.lower()
self._description_pattern = (
"There should be {num_paragraphs} paragraphs. "
+ "Paragraphs and only paragraphs are separated with each other by two "
+ "new lines as if it was '\\n\\n' in python. "
+ "Paragraph {nth_paragraph} must start with word {first_word}."
)
return self._description_pattern.format(
num_paragraphs=self._num_paragraphs,
nth_paragraph=self._nth_paragraph,
first_word=self._first_word,
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"num_paragraphs": self._num_paragraphs,
"nth_paragraph": self._nth_paragraph,
"first_word": self._first_word,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_paragraphs", "nth_paragraph", "first_word"]
def check_following(self, value):
"""Checks for required number of paragraphs and correct first word.
Args:
value: a string representing the response. The response may contain
paragraphs that are separated by two new lines and the first word of
the nth paragraph will have to match a specified word.
Returns:
True if the number of paragraphs is the same as required and the first
word of the specified paragraph is the same as required. Otherwise, false.
"""
paragraphs = re.split(r"\n\n", value)
num_paragraphs = len(paragraphs)
for paragraph in paragraphs:
if not paragraph.strip():
num_paragraphs -= 1
# check that index doesn't go out of bounds
if self._nth_paragraph <= num_paragraphs:
paragraph = paragraphs[self._nth_paragraph - 1].strip()
if not paragraph:
return False
else:
return False
first_word = ""
punctuation = {".", ",", "?", "!", "'", '"'}
# get first word and remove punctuation
word = paragraph.split()[0].strip()
# TODO(jeffrey): make more complex?
word = word.lstrip("'")
word = word.lstrip('"')
for letter in word:
if letter in punctuation:
break
first_word += letter.lower()
return num_paragraphs == self._num_paragraphs and first_word == self._first_word
# TODO(jeffrey) add relation - at least/at most?
class KeySentenceChecker(Instruction):
"""Check the existence of certain key sentences."""
def build_description(self, key_sentences=None, num_sentences=None):
"""Build the instruction description.
Args:
key_sentences: A sequences of strings representing the key sentences that
are expected in the response.
num_sentences: The number of key sentences that are expected to be seen in
the response.
Returns:
A string representing the instruction description.
"""
if not key_sentences:
# TODO(jeffrey) make a generate sentences function? wonderwords package
self._key_sentences = set(["For now, this is fine."])
else:
self._key_sentences = key_sentences
if not num_sentences:
self._num_sentences = random.randint(1, len(self._key_sentences))
else:
self._num_sentences = num_sentences
self._description_pattern = (
"Include {num_sentences} of the following sentences {key_sentences}"
)
return self._description_pattern.format(
num_sentences=self._num_sentences, key_sentences=self._key_sentences
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"num_sentences": self._num_sentences,
"key_sentences": list(self._key_sentences),
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["num_sentences", "key_sentences"]
def check_following(self, value):
"""Checks if the response contains the expected key sentences."""
count = 0
sentences = instructions_util.split_into_sentences(value)
for sentence in self._key_sentences:
if sentence in sentences:
count += 1
return count == self._num_sentences
class ForbiddenWords(Instruction):
"""Checks that specified words are not used in response."""
def build_description(self, forbidden_words=None):
"""Build the instruction description.
Args:
forbidden_words: A sequences of strings respresenting words that are not
allowed in the response.
Returns:
A string representing the instruction description.
"""
if not forbidden_words:
self._forbidden_words = instructions_util.generate_keywords(
num_keywords=_NUM_KEYWORDS
)
else:
self._forbidden_words = list(set(forbidden_words))
self._forbidden_words = sorted(self._forbidden_words)
self._description_pattern = (
"Do not include keywords {forbidden_words} in the response."
)
return self._description_pattern.format(forbidden_words=self._forbidden_words)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {"forbidden_words": self._forbidden_words}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["forbidden_words"]
def check_following(self, value):
"""Check if the response does not contain the expected keywords."""
for word in self._forbidden_words:
if re.search(r"\b" + word + r"\b", value, flags=re.IGNORECASE):
return False
return True
class RephraseParagraph(Instruction):
"""Checks that the paragraph is rephrased."""
def build_description(self, *, original_paragraph, low, high):
"""Builds the instruction description.
Args:
original_paragraph: A string presenting the original paragraph. The
rephrases response should have betweeb low-high words in common.
low: An integer presenting the lower bound of similar words.
high: An integer representing the upper bound of similar words.
Returns:
A string representing the instruction description.
"""
# TODO(jeffrey) make more encompassing
self._original_paragraph = original_paragraph
self._low = low
self._high = high
self._description = (
"Rephrase the following paragraph: "
+ "{original_paragraph}\nYour response should have "
+ "between {low} and {high} of the same words. "
+ "Words are the same if and only if all of the "
+ "letters, ignoring cases, are the same. For "
+ "example, 'run' is the same as 'Run' but different "
+ "to 'ran'."
)
return self._description.format(
original_paragraph=original_paragraph, low=self._low, high=self._high
)
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return {
"original_paragraph": self._original_paragraph,
"low": self._low,
"high": self._high,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["original_paragraph", "low", "high"]
def check_following(self, value):
val_words = re.findall(r"\w+", value.lower())
original_words = re.findall(r"\w+", self._original_paragraph.lower())
similar_words = 0
dict_val = collections.Counter(val_words)
dict_original = collections.Counter(original_words)
for word in dict_original:
similar_words += min(dict_original[word], dict_val[word])
return similar_words >= self._low and similar_words <= self._high
class TwoResponsesChecker(Instruction):
"""Check that two responses were given."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"Give two different responses. Responses and only responses should"
" be separated by 6 asterisk symbols: ******."
)
return self._description_pattern
def get_instruction_args(self):
"""Returns the keyward args of `build_description`."""
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks if the response has two different answers.
Args:
value: A string representing the response.
Returns:
True if two responses are detected and false otherwise.
"""
valid_responses = list()
responses = value.split("******")
for index, response in enumerate(responses):
if not response.strip():
if index != 0 and index != len(responses) - 1:
return False
else:
valid_responses.append(response)
return (
len(valid_responses) == 2
and valid_responses[0].strip() != valid_responses[1].strip()
)
class RepeatPromptThenAnswer(Instruction):
"""Checks that Prompt is first repeated then answered."""
def build_description(self, *, prompt_to_repeat=None):
"""Build the instruction description.
Args:
prompt_to_repeat: The prompt that is meant to be repeated.
Returns:
A string representing the instruction description.
"""
if not prompt_to_repeat:
raise ValueError("prompt_to_repeat must be set.")
else:
self._prompt_to_repeat = prompt_to_repeat
self._description_pattern = (
"First repeat the request word for word without change,"
" then give your answer (1. do not say any words or characters"
" before repeating the request; 2. the request you need to repeat"
" does not include this sentence)"
)
return self._description_pattern
def get_instruction_args(self):
return {"prompt_to_repeat": self._prompt_to_repeat}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["prompt_to_repeat"]
def check_following(self, value):
if value.strip().lower().startswith(self._prompt_to_repeat.strip().lower()):
return True
return False
class EndChecker(Instruction):
"""Checks that the prompt ends with a given phrase."""
def build_description(self, *, end_phrase=None):
"""Build the instruction description.
Args:
end_phrase: A string representing the phrase the response should end with.
Returns:
A string representing the instruction description.
"""
self._end_phrase = (
end_phrase.strip() if isinstance(end_phrase, str) else end_phrase
)
if self._end_phrase is None:
self._end_phrase = random.choice(_ENDING_OPTIONS)
self._description_pattern = (
"Finish your response with this exact phrase {ender}. "
"No other words should follow this phrase."
)
return self._description_pattern.format(ender=self._end_phrase)
def get_instruction_args(self):
return {"end_phrase": self._end_phrase}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["end_phrase"]
def check_following(self, value):
"""Checks if the response ends with the expected phrase."""
value = value.strip().strip('"').lower()
self._end_phrase = self._end_phrase.strip().lower()
return value.endswith(self._end_phrase)
class TitleChecker(Instruction):
"""Checks the response for a title."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"Your answer must contain a title, wrapped in double angular brackets,"
" such as <<poem of joy>>."
)
return self._description_pattern
def get_instruction_args(self):
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks if the response contains a title."""
pattern = r"<<[^\n]+>>"
re_pattern = re.compile(pattern)
titles = re.findall(re_pattern, value)
for title in titles:
if title.lstrip("<").rstrip(">").strip():
return True
return False
class LetterFrequencyChecker(Instruction):
"""Checks letter frequency."""
def build_description(self, *, letter=None, let_frequency=None, let_relation=None):
"""Build the instruction description.
Args:
letter: A string representing a letter that is expected in the response.
let_frequency: An integer specifying the number of times `keyword` is
expected to appear in the response.
let_relation: A string in (`less than`, `at least`), defining the
relational operator for comparison. Two relational comparisons are
supported for now; if 'less than', the actual number of
occurrences < frequency; if 'at least', the actual number of
occurrences >= frequency.
Returns:
A string representing the instruction description.
"""
if (
not letter
or len(letter) > 1
or ord(letter.lower()) < 97
or ord(letter.lower()) > 122
):
self._letter = random.choice(list(string.ascii_letters))
else:
self._letter = letter.strip()
self._letter = self._letter.lower()
self._frequency = let_frequency
if self._frequency is None or self._frequency < 0:
self._frequency = random.randint(1, _LETTER_FREQUENCY)
if let_relation is None:
self._comparison_relation = random.choice(_COMPARISON_RELATION)
elif let_relation not in _COMPARISON_RELATION:
raise ValueError(
"The supported relation for comparison must be in "
f"{_COMPARISON_RELATION}, but {let_relation} is given."
)
else:
self._comparison_relation = let_relation
self._description_pattern = (
"In your response, the letter {letter} should appear {let_relation}"
" {let_frequency} times."
)
return self._description_pattern.format(
letter=self._letter,
let_frequency=self._frequency,
let_relation=self._comparison_relation,
)
def get_instruction_args(self):
"""Returns the keyword args of build description."""
return {
"letter": self._letter,
"let_frequency": self._frequency,
"let_relation": self._comparison_relation,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["letter", "let_frequency", "let_relation"]
def check_following(self, value):
"""Checks that the response contains the letter at the right frequency."""
value = value.lower()
letters = collections.Counter(value)
if self._comparison_relation == _COMPARISON_RELATION[0]:
return letters[self._letter] < self._frequency
else:
return letters[self._letter] >= self._frequency
class CapitalLettersEnglishChecker(Instruction):
"""Checks that the response is in english and is in all capital letters."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"Your entire response should be in English, and in all capital letters."
)
return self._description_pattern
def get_instruction_args(self):
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks that the response is in English and in all capital letters."""
assert isinstance(value, str)
try:
return value.isupper() and langdetect.detect(value) == "en"
except langdetect.LangDetectException as e:
# Count as instruction is followed.
logging.error(
"Unable to detect language for text %s due to %s", value, e
) # refex: disable=pytotw.037
return True
class LowercaseLettersEnglishChecker(Instruction):
"""Checks that the response is in english and is in all lowercase letters."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"Your entire response should be in English, and in all lowercase"
" letters. No capital letters are allowed."
)
return self._description_pattern
def get_instruction_args(self):
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks that the response is in English and in all lowercase letters."""
assert isinstance(value, str)
try:
return value.islower() and langdetect.detect(value) == "en"
except langdetect.LangDetectException as e:
# Count as instruction is followed.
logging.error(
"Unable to detect language for text %s due to %s", value, e
) # refex: disable=pytotw.037
return True
class CommaChecker(Instruction):
"""Checks the response for no commas."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"In your entire response, refrain from the use of any commas."
)
return self._description_pattern
def get_instruction_args(self):
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks that the response does not contain commas."""
return not re.search(r"\,", value)
class CapitalWordFrequencyChecker(Instruction):
"""Checks frequency of words with all capital letters."""
def build_description(
self,
capital_frequency=None,
capital_relation=None,
):
"""Build the instruction description.
Args:
capital_frequency: An integer that represents the number of words that
should be in all capital letters.
capital_relation: A string that is 'at least' or 'at most' that refers to
the frequency.
Returns:
A string representing the instruction description.
"""
self._frequency = capital_frequency
if self._frequency is None:
self._frequency = random.randint(1, _ALL_CAPITAL_WORD_FREQUENCY)
self._comparison_relation = capital_relation
if capital_relation is None:
self._comparison_relation = random.choice(_COMPARISON_RELATION)
elif capital_relation not in _COMPARISON_RELATION:
raise ValueError(
"The supported relation for comparison must be in "
f"{_COMPARISON_RELATION}, but {capital_relation} is given."
)
self._description_pattern = (
"In your response, words with all capital letters should appear"
" {relation} {frequency} times."
)
return self._description_pattern.format(
frequency=self._frequency, relation=self._comparison_relation
)
def get_instruction_args(self):
"""Returns the keyword args of build description."""
return {
"capital_frequency": self._frequency,
"capital_relation": self._comparison_relation,
}
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return ["capital_frequency", "capital_relation"]
def check_following(self, value):
"""Checks the frequency of words with all capital letters."""
# Hyphenated words will count as one word
words = instructions_util.nltk.word_tokenize(value)
capital_words = [word for word in words if word.isupper()]
capital_words = len(capital_words)
if self._comparison_relation == _COMPARISON_RELATION[0]:
return capital_words < self._frequency
else:
return capital_words >= self._frequency
class QuotationChecker(Instruction):
"""Checks response is wrapped with double quotation marks."""
def build_description(self):
"""Build the instruction description."""
self._description_pattern = (
"Wrap your entire response with double quotation marks."
)
return self._description_pattern
def get_instruction_args(self):
"""Returns the keyword args of build description."""
return None
def get_instruction_args_keys(self):
"""Returns the args keys of `build_description`."""
return []
def check_following(self, value):
"""Checks if the response is wrapped with double quotation marks."""
value = value.strip()
return len(value) > 1 and value[0] == '"' and value[-1] == '"'
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Registry of all instructions."""
from lm_eval.tasks.ifeval import instructions
_KEYWORD = "keywords:"
_LANGUAGE = "language:"
_LENGTH = "length_constraints:"
_CONTENT = "detectable_content:"
_FORMAT = "detectable_format:"
_MULTITURN = "multi-turn:"
_COMBINATION = "combination:"
_STARTEND = "startend:"
_CHANGE_CASES = "change_case:"
_PUNCTUATION = "punctuation:"
INSTRUCTION_DICT = {
_KEYWORD + "existence": instructions.KeywordChecker,
_KEYWORD + "frequency": instructions.KeywordFrequencyChecker,
# TODO(jeffreyzhou): make a proper set of sentences to choose from
# _KEYWORD + "key_sentences": instructions.KeySentenceChecker,
_KEYWORD + "forbidden_words": instructions.ForbiddenWords,
_KEYWORD + "letter_frequency": instructions.LetterFrequencyChecker,
_LANGUAGE + "response_language": instructions.ResponseLanguageChecker,
_LENGTH + "number_sentences": instructions.NumberOfSentences,
_LENGTH + "number_paragraphs": instructions.ParagraphChecker,
_LENGTH + "number_words": instructions.NumberOfWords,
_LENGTH + "nth_paragraph_first_word": instructions.ParagraphFirstWordCheck,
_CONTENT + "number_placeholders": instructions.PlaceholderChecker,
_CONTENT + "postscript": instructions.PostscriptChecker,
_FORMAT + "number_bullet_lists": instructions.BulletListChecker,
# TODO(jeffreyzhou): Pre-create paragraph or use prompt to replace
# _CONTENT + "rephrase_paragraph": instructions.RephraseParagraph,
_FORMAT + "constrained_response": instructions.ConstrainedResponseChecker,
_FORMAT + "number_highlighted_sections": (instructions.HighlightSectionChecker),
_FORMAT + "multiple_sections": instructions.SectionChecker,
# TODO(tianjianlu): Re-enable rephrasing with preprocessing the message.
# _FORMAT + "rephrase": instructions.RephraseChecker,
_FORMAT + "json_format": instructions.JsonFormat,
_FORMAT + "title": instructions.TitleChecker,
# TODO(tianjianlu): Re-enable with specific prompts.
# _MULTITURN + "constrained_start": instructions.ConstrainedStartChecker,
_COMBINATION + "two_responses": instructions.TwoResponsesChecker,
_COMBINATION + "repeat_prompt": instructions.RepeatPromptThenAnswer,
_STARTEND + "end_checker": instructions.EndChecker,
_CHANGE_CASES + "capital_word_frequency": instructions.CapitalWordFrequencyChecker,
_CHANGE_CASES + "english_capital": instructions.CapitalLettersEnglishChecker,
_CHANGE_CASES + "english_lowercase": instructions.LowercaseLettersEnglishChecker,
_PUNCTUATION + "no_comma": instructions.CommaChecker,
_STARTEND + "quotation": instructions.QuotationChecker,
}
INSTRUCTION_CONFLICTS = {
_KEYWORD + "existence": {_KEYWORD + "existence"},
_KEYWORD + "frequency": {_KEYWORD + "frequency"},
# TODO(jeffreyzhou): make a proper set of sentences to choose from
# _KEYWORD + "key_sentences": instructions.KeySentenceChecker,
_KEYWORD + "forbidden_words": {_KEYWORD + "forbidden_words"},
_KEYWORD + "letter_frequency": {_KEYWORD + "letter_frequency"},
_LANGUAGE
+ "response_language": {
_LANGUAGE + "response_language",
_FORMAT + "multiple_sections",
_KEYWORD + "existence",
_KEYWORD + "frequency",
_KEYWORD + "forbidden_words",
_STARTEND + "end_checker",
_CHANGE_CASES + "english_capital",
_CHANGE_CASES + "english_lowercase",
},
_LENGTH + "number_sentences": {_LENGTH + "number_sentences"},
_LENGTH
+ "number_paragraphs": {
_LENGTH + "number_paragraphs",
_LENGTH + "nth_paragraph_first_word",
_LENGTH + "number_sentences",
_LENGTH + "nth_paragraph_first_word",
},
_LENGTH + "number_words": {_LENGTH + "number_words"},
_LENGTH
+ "nth_paragraph_first_word": {
_LENGTH + "nth_paragraph_first_word",
_LENGTH + "number_paragraphs",
},
_CONTENT + "number_placeholders": {_CONTENT + "number_placeholders"},
_CONTENT + "postscript": {_CONTENT + "postscript"},
_FORMAT + "number_bullet_lists": {_FORMAT + "number_bullet_lists"},
# TODO(jeffreyzhou): Pre-create paragraph or use prompt to replace
# _CONTENT + "rephrase_paragraph": instructions.RephraseParagraph,
_FORMAT + "constrained_response": set(INSTRUCTION_DICT.keys()),
_FORMAT + "number_highlighted_sections": {_FORMAT + "number_highlighted_sections"},
_FORMAT
+ "multiple_sections": {
_FORMAT + "multiple_sections",
_LANGUAGE + "response_language",
_FORMAT + "number_highlighted_sections",
},
# TODO(tianjianlu): Re-enable rephrasing with preprocessing the message.
# _FORMAT + "rephrase": instructions.RephraseChecker,
_FORMAT
+ "json_format": set(INSTRUCTION_DICT.keys()).difference(
{_KEYWORD + "forbidden_words", _KEYWORD + "existence"}
),
_FORMAT + "title": {_FORMAT + "title"},
# TODO(tianjianlu): Re-enable with specific prompts.
# _MULTITURN + "constrained_start": instructions.ConstrainedStartChecker,
_COMBINATION
+ "two_responses": set(INSTRUCTION_DICT.keys()).difference(
{
_KEYWORD + "forbidden_words",
_KEYWORD + "existence",
_LANGUAGE + "response_language",
_FORMAT + "title",
_PUNCTUATION + "no_comma",
}
),
_COMBINATION
+ "repeat_prompt": set(INSTRUCTION_DICT.keys()).difference(
{_KEYWORD + "existence", _FORMAT + "title", _PUNCTUATION + "no_comma"}
),
_STARTEND + "end_checker": {_STARTEND + "end_checker"},
_CHANGE_CASES
+ "capital_word_frequency": {
_CHANGE_CASES + "capital_word_frequency",
_CHANGE_CASES + "english_lowercase",
_CHANGE_CASES + "english_capital",
},
_CHANGE_CASES + "english_capital": {_CHANGE_CASES + "english_capital"},
_CHANGE_CASES
+ "english_lowercase": {
_CHANGE_CASES + "english_lowercase",
_CHANGE_CASES + "english_capital",
},
_PUNCTUATION + "no_comma": {_PUNCTUATION + "no_comma"},
_STARTEND + "quotation": {_STARTEND + "quotation", _FORMAT + "title"},
}
def conflict_make(conflicts):
"""Makes sure if A conflicts with B, B will conflict with A.
Args:
conflicts: Dictionary of potential conflicts where key is instruction id
and value is set of instruction ids that it conflicts with.
Returns:
Revised version of the dictionary. All instructions conflict with
themselves. If A conflicts with B, B will conflict with A.
"""
for key in conflicts:
for k in conflicts[key]:
conflicts[k].add(key)
conflicts[key].add(key)
return conflicts
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility library of instructions."""
import functools
import random
import re
from typing import List
import immutabledict
import nltk
def download_nltk_resources():
"""Download 'punkt' if not already installed"""
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt")
download_nltk_resources()
WORD_LIST = [
"western",
"sentence",
"signal",
"dump",
"spot",
"opposite",
"bottom",
"potato",
"administration",
"working",
"welcome",
"morning",
"good",
"agency",
"primary",
"wish",
"responsibility",
"press",
"problem",
"president",
"steal",
"brush",
"read",
"type",
"beat",
"trainer",
"growth",
"lock",
"bone",
"case",
"equal",
"comfortable",
"region",
"replacement",
"performance",
"mate",
"walk",
"medicine",
"film",
"thing",
"rock",
"tap",
"total",
"competition",
"ease",
"south",
"establishment",
"gather",
"parking",
"world",
"plenty",
"breath",
"claim",
"alcohol",
"trade",
"dear",
"highlight",
"street",
"matter",
"decision",
"mess",
"agreement",
"studio",
"coach",
"assist",
"brain",
"wing",
"style",
"private",
"top",
"brown",
"leg",
"buy",
"procedure",
"method",
"speed",
"high",
"company",
"valuable",
"pie",
"analyst",
"session",
"pattern",
"district",
"pleasure",
"dinner",
"swimming",
"joke",
"order",
"plate",
"department",
"motor",
"cell",
"spend",
"cabinet",
"difference",
"power",
"examination",
"engine",
"horse",
"dimension",
"pay",
"toe",
"curve",
"literature",
"bother",
"fire",
"possibility",
"debate",
"activity",
"passage",
"hello",
"cycle",
"background",
"quiet",
"author",
"effect",
"actor",
"page",
"bicycle",
"error",
"throat",
"attack",
"character",
"phone",
"tea",
"increase",
"outcome",
"file",
"specific",
"inspector",
"internal",
"potential",
"staff",
"building",
"employer",
"shoe",
"hand",
"direction",
"garden",
"purchase",
"interview",
"study",
"recognition",
"member",
"spiritual",
"oven",
"sandwich",
"weird",
"passenger",
"particular",
"response",
"reaction",
"size",
"variation",
"a",
"cancel",
"candy",
"exit",
"guest",
"condition",
"fly",
"price",
"weakness",
"convert",
"hotel",
"great",
"mouth",
"mind",
"song",
"sugar",
"suspect",
"telephone",
"ear",
"roof",
"paint",
"refrigerator",
"organization",
"jury",
"reward",
"engineering",
"day",
"possession",
"crew",
"bar",
"road",
"description",
"celebration",
"score",
"mark",
"letter",
"shower",
"suggestion",
"sir",
"luck",
"national",
"progress",
"hall",
"stroke",
"theory",
"offer",
"story",
"tax",
"definition",
"history",
"ride",
"medium",
"opening",
"glass",
"elevator",
"stomach",
"question",
"ability",
"leading",
"village",
"computer",
"city",
"grand",
"confidence",
"candle",
"priest",
"recommendation",
"point",
"necessary",
"body",
"desk",
"secret",
"horror",
"noise",
"culture",
"warning",
"water",
"round",
"diet",
"flower",
"bus",
"tough",
"permission",
"week",
"prompt",
"connection",
"abuse",
"height",
"save",
"corner",
"border",
"stress",
"drive",
"stop",
"rip",
"meal",
"listen",
"confusion",
"girlfriend",
"living",
"relation",
"significance",
"plan",
"creative",
"atmosphere",
"blame",
"invite",
"housing",
"paper",
"drink",
"roll",
"silver",
"drunk",
"age",
"damage",
"smoke",
"environment",
"pack",
"savings",
"influence",
"tourist",
"rain",
"post",
"sign",
"grandmother",
"run",
"profit",
"push",
"clerk",
"final",
"wine",
"swim",
"pause",
"stuff",
"singer",
"funeral",
"average",
"source",
"scene",
"tradition",
"personal",
"snow",
"nobody",
"distance",
"sort",
"sensitive",
"animal",
"major",
"negotiation",
"click",
"mood",
"period",
"arrival",
"expression",
"holiday",
"repeat",
"dust",
"closet",
"gold",
"bad",
"sail",
"combination",
"clothes",
"emphasis",
"duty",
"black",
"step",
"school",
"jump",
"document",
"professional",
"lip",
"chemical",
"front",
"wake",
"while",
"inside",
"watch",
"row",
"subject",
"penalty",
"balance",
"possible",
"adult",
"aside",
"sample",
"appeal",
"wedding",
"depth",
"king",
"award",
"wife",
"blow",
"site",
"camp",
"music",
"safe",
"gift",
"fault",
"guess",
"act",
"shame",
"drama",
"capital",
"exam",
"stupid",
"record",
"sound",
"swing",
"novel",
"minimum",
"ratio",
"machine",
"shape",
"lead",
"operation",
"salary",
"cloud",
"affair",
"hit",
"chapter",
"stage",
"quantity",
"access",
"army",
"chain",
"traffic",
"kick",
"analysis",
"airport",
"time",
"vacation",
"philosophy",
"ball",
"chest",
"thanks",
"place",
"mountain",
"advertising",
"red",
"past",
"rent",
"return",
"tour",
"house",
"construction",
"net",
"native",
"war",
"figure",
"fee",
"spray",
"user",
"dirt",
"shot",
"task",
"stick",
"friend",
"software",
"promotion",
"interaction",
"surround",
"block",
"purpose",
"practice",
"conflict",
"routine",
"requirement",
"bonus",
"hole",
"state",
"junior",
"sweet",
"catch",
"tear",
"fold",
"wall",
"editor",
"life",
"position",
"pound",
"respect",
"bathroom",
"coat",
"script",
"job",
"teach",
"birth",
"view",
"resolve",
"theme",
"employee",
"doubt",
"market",
"education",
"serve",
"recover",
"tone",
"harm",
"miss",
"union",
"understanding",
"cow",
"river",
"association",
"concept",
"training",
"recipe",
"relationship",
"reserve",
"depression",
"proof",
"hair",
"revenue",
"independent",
"lift",
"assignment",
"temporary",
"amount",
"loss",
"edge",
"track",
"check",
"rope",
"estimate",
"pollution",
"stable",
"message",
"delivery",
"perspective",
"mirror",
"assistant",
"representative",
"witness",
"nature",
"judge",
"fruit",
"tip",
"devil",
"town",
"emergency",
"upper",
"drop",
"stay",
"human",
"neck",
"speaker",
"network",
"sing",
"resist",
"league",
"trip",
"signature",
"lawyer",
"importance",
"gas",
"choice",
"engineer",
"success",
"part",
"external",
"worker",
"simple",
"quarter",
"student",
"heart",
"pass",
"spite",
"shift",
"rough",
"lady",
"grass",
"community",
"garage",
"youth",
"standard",
"skirt",
"promise",
"blind",
"television",
"disease",
"commission",
"positive",
"energy",
"calm",
"presence",
"tune",
"basis",
"preference",
"head",
"common",
"cut",
"somewhere",
"presentation",
"current",
"thought",
"revolution",
"effort",
"master",
"implement",
"republic",
"floor",
"principle",
"stranger",
"shoulder",
"grade",
"button",
"tennis",
"police",
"collection",
"account",
"register",
"glove",
"divide",
"professor",
"chair",
"priority",
"combine",
"peace",
"extension",
"maybe",
"evening",
"frame",
"sister",
"wave",
"code",
"application",
"mouse",
"match",
"counter",
"bottle",
"half",
"cheek",
"resolution",
"back",
"knowledge",
"make",
"discussion",
"screw",
"length",
"accident",
"battle",
"dress",
"knee",
"log",
"package",
"it",
"turn",
"hearing",
"newspaper",
"layer",
"wealth",
"profile",
"imagination",
"answer",
"weekend",
"teacher",
"appearance",
"meet",
"bike",
"rise",
"belt",
"crash",
"bowl",
"equivalent",
"support",
"image",
"poem",
"risk",
"excitement",
"remote",
"secretary",
"public",
"produce",
"plane",
"display",
"money",
"sand",
"situation",
"punch",
"customer",
"title",
"shake",
"mortgage",
"option",
"number",
"pop",
"window",
"extent",
"nothing",
"experience",
"opinion",
"departure",
"dance",
"indication",
"boy",
"material",
"band",
"leader",
"sun",
"beautiful",
"muscle",
"farmer",
"variety",
"fat",
"handle",
"director",
"opportunity",
"calendar",
"outside",
"pace",
"bath",
"fish",
"consequence",
"put",
"owner",
"go",
"doctor",
"information",
"share",
"hurt",
"protection",
"career",
"finance",
"force",
"golf",
"garbage",
"aspect",
"kid",
"food",
"boot",
"milk",
"respond",
"objective",
"reality",
"raw",
"ring",
"mall",
"one",
"impact",
"area",
"news",
"international",
"series",
"impress",
"mother",
"shelter",
"strike",
"loan",
"month",
"seat",
"anything",
"entertainment",
"familiar",
"clue",
"year",
"glad",
"supermarket",
"natural",
"god",
"cost",
"conversation",
"tie",
"ruin",
"comfort",
"earth",
"storm",
"percentage",
"assistance",
"budget",
"strength",
"beginning",
"sleep",
"other",
"young",
"unit",
"fill",
"store",
"desire",
"hide",
"value",
"cup",
"maintenance",
"nurse",
"function",
"tower",
"role",
"class",
"camera",
"database",
"panic",
"nation",
"basket",
"ice",
"art",
"spirit",
"chart",
"exchange",
"feedback",
"statement",
"reputation",
"search",
"hunt",
"exercise",
"nasty",
"notice",
"male",
"yard",
"annual",
"collar",
"date",
"platform",
"plant",
"fortune",
"passion",
"friendship",
"spread",
"cancer",
"ticket",
"attitude",
"island",
"active",
"object",
"service",
"buyer",
"bite",
"card",
"face",
"steak",
"proposal",
"patient",
"heat",
"rule",
"resident",
"broad",
"politics",
"west",
"knife",
"expert",
"girl",
"design",
"salt",
"baseball",
"grab",
"inspection",
"cousin",
"couple",
"magazine",
"cook",
"dependent",
"security",
"chicken",
"version",
"currency",
"ladder",
"scheme",
"kitchen",
"employment",
"local",
"attention",
"manager",
"fact",
"cover",
"sad",
"guard",
"relative",
"county",
"rate",
"lunch",
"program",
"initiative",
"gear",
"bridge",
"breast",
"talk",
"dish",
"guarantee",
"beer",
"vehicle",
"reception",
"woman",
"substance",
"copy",
"lecture",
"advantage",
"park",
"cold",
"death",
"mix",
"hold",
"scale",
"tomorrow",
"blood",
"request",
"green",
"cookie",
"church",
"strip",
"forever",
"beyond",
"debt",
"tackle",
"wash",
"following",
"feel",
"maximum",
"sector",
"sea",
"property",
"economics",
"menu",
"bench",
"try",
"language",
"start",
"call",
"solid",
"address",
"income",
"foot",
"senior",
"honey",
"few",
"mixture",
"cash",
"grocery",
"link",
"map",
"form",
"factor",
"pot",
"model",
"writer",
"farm",
"winter",
"skill",
"anywhere",
"birthday",
"policy",
"release",
"husband",
"lab",
"hurry",
"mail",
"equipment",
"sink",
"pair",
"driver",
"consideration",
"leather",
"skin",
"blue",
"boat",
"sale",
"brick",
"two",
"feed",
"square",
"dot",
"rush",
"dream",
"location",
"afternoon",
"manufacturer",
"control",
"occasion",
"trouble",
"introduction",
"advice",
"bet",
"eat",
"kill",
"category",
"manner",
"office",
"estate",
"pride",
"awareness",
"slip",
"crack",
"client",
"nail",
"shoot",
"membership",
"soft",
"anybody",
"web",
"official",
"individual",
"pizza",
"interest",
"bag",
"spell",
"profession",
"queen",
"deal",
"resource",
"ship",
"guy",
"chocolate",
"joint",
"formal",
"upstairs",
"car",
"resort",
"abroad",
"dealer",
"associate",
"finger",
"surgery",
"comment",
"team",
"detail",
"crazy",
"path",
"tale",
"initial",
"arm",
"radio",
"demand",
"single",
"draw",
"yellow",
"contest",
"piece",
"quote",
"pull",
"commercial",
"shirt",
"contribution",
"cream",
"channel",
"suit",
"discipline",
"instruction",
"concert",
"speech",
"low",
"effective",
"hang",
"scratch",
"industry",
"breakfast",
"lay",
"join",
"metal",
"bedroom",
"minute",
"product",
"rest",
"temperature",
"many",
"give",
"argument",
"print",
"purple",
"laugh",
"health",
"credit",
"investment",
"sell",
"setting",
"lesson",
"egg",
"middle",
"marriage",
"level",
"evidence",
"phrase",
"love",
"self",
"benefit",
"guidance",
"affect",
"you",
"dad",
"anxiety",
"special",
"boyfriend",
"test",
"blank",
"payment",
"soup",
"obligation",
"reply",
"smile",
"deep",
"complaint",
"addition",
"review",
"box",
"towel",
"minor",
"fun",
"soil",
"issue",
"cigarette",
"internet",
"gain",
"tell",
"entry",
"spare",
"incident",
"family",
"refuse",
"branch",
"can",
"pen",
"grandfather",
"constant",
"tank",
"uncle",
"climate",
"ground",
"volume",
"communication",
"kind",
"poet",
"child",
"screen",
"mine",
"quit",
"gene",
"lack",
"charity",
"memory",
"tooth",
"fear",
"mention",
"marketing",
"reveal",
"reason",
"court",
"season",
"freedom",
"land",
"sport",
"audience",
"classroom",
"law",
"hook",
"win",
"carry",
"eye",
"smell",
"distribution",
"research",
"country",
"dare",
"hope",
"whereas",
"stretch",
"library",
"if",
"delay",
"college",
"plastic",
"book",
"present",
"use",
"worry",
"champion",
"goal",
"economy",
"march",
"election",
"reflection",
"midnight",
"slide",
"inflation",
"action",
"challenge",
"guitar",
"coast",
"apple",
"campaign",
"field",
"jacket",
"sense",
"way",
"visual",
"remove",
"weather",
"trash",
"cable",
"regret",
"buddy",
"beach",
"historian",
"courage",
"sympathy",
"truck",
"tension",
"permit",
"nose",
"bed",
"son",
"person",
"base",
"meat",
"usual",
"air",
"meeting",
"worth",
"game",
"independence",
"physical",
"brief",
"play",
"raise",
"board",
"she",
"key",
"writing",
"pick",
"command",
"party",
"yesterday",
"spring",
"candidate",
"physics",
"university",
"concern",
"development",
"change",
"string",
"target",
"instance",
"room",
"bitter",
"bird",
"football",
"normal",
"split",
"impression",
"wood",
"long",
"meaning",
"stock",
"cap",
"leadership",
"media",
"ambition",
"fishing",
"essay",
"salad",
"repair",
"today",
"designer",
"night",
"bank",
"drawing",
"inevitable",
"phase",
"vast",
"chip",
"anger",
"switch",
"cry",
"twist",
"personality",
"attempt",
"storage",
"being",
"preparation",
"bat",
"selection",
"white",
"technology",
"contract",
"side",
"section",
"station",
"till",
"structure",
"tongue",
"taste",
"truth",
"difficulty",
"group",
"limit",
"main",
"move",
"feeling",
"light",
"example",
"mission",
"might",
"wait",
"wheel",
"shop",
"host",
"classic",
"alternative",
"cause",
"agent",
"consist",
"table",
"airline",
"text",
"pool",
"craft",
"range",
"fuel",
"tool",
"partner",
"load",
"entrance",
"deposit",
"hate",
"article",
"video",
"summer",
"feature",
"extreme",
"mobile",
"hospital",
"flight",
"fall",
"pension",
"piano",
"fail",
"result",
"rub",
"gap",
"system",
"report",
"suck",
"ordinary",
"wind",
"nerve",
"ask",
"shine",
"note",
"line",
"mom",
"perception",
"brother",
"reference",
"bend",
"charge",
"treat",
"trick",
"term",
"homework",
"bake",
"bid",
"status",
"project",
"strategy",
"orange",
"let",
"enthusiasm",
"parent",
"concentrate",
"device",
"travel",
"poetry",
"business",
"society",
"kiss",
"end",
"vegetable",
"employ",
"schedule",
"hour",
"brave",
"focus",
"process",
"movie",
"illegal",
"general",
"coffee",
"ad",
"highway",
"chemistry",
"psychology",
"hire",
"bell",
"conference",
"relief",
"show",
"neat",
"funny",
"weight",
"quality",
"club",
"daughter",
"zone",
"touch",
"tonight",
"shock",
"burn",
"excuse",
"name",
"survey",
"landscape",
"advance",
"satisfaction",
"bread",
"disaster",
"item",
"hat",
"prior",
"shopping",
"visit",
"east",
"photo",
"home",
"idea",
"father",
"comparison",
"cat",
"pipe",
"winner",
"count",
"lake",
"fight",
"prize",
"foundation",
"dog",
"keep",
"ideal",
"fan",
"struggle",
"peak",
"safety",
"solution",
"hell",
"conclusion",
"population",
"strain",
"alarm",
"measurement",
"second",
"train",
"race",
"due",
"insurance",
"boss",
"tree",
"monitor",
"sick",
"course",
"drag",
"appointment",
"slice",
"still",
"care",
"patience",
"rich",
"escape",
"emotion",
"royal",
"female",
"childhood",
"government",
"picture",
"will",
"sock",
"big",
"gate",
"oil",
"cross",
"pin",
"improvement",
"championship",
"silly",
"help",
"sky",
"pitch",
"man",
"diamond",
"most",
"transition",
"work",
"science",
"committee",
"moment",
"fix",
"teaching",
"dig",
"specialist",
"complex",
"guide",
"people",
"dead",
"voice",
"original",
"break",
"topic",
"data",
"degree",
"reading",
"recording",
"bunch",
"reach",
"judgment",
"lie",
"regular",
"set",
"painting",
"mode",
"list",
"player",
"bear",
"north",
"wonder",
"carpet",
"heavy",
"officer",
"negative",
"clock",
"unique",
"baby",
"pain",
"assumption",
"disk",
"iron",
"bill",
"drawer",
"look",
"double",
"mistake",
"finish",
"future",
"brilliant",
"contact",
"math",
"rice",
"leave",
"restaurant",
"discount",
"sex",
"virus",
"bit",
"trust",
"event",
"wear",
"juice",
"failure",
"bug",
"context",
"mud",
"whole",
"wrap",
"intention",
"draft",
"pressure",
"cake",
"dark",
"explanation",
"space",
"angle",
"word",
"efficiency",
"management",
"habit",
"star",
"chance",
"finding",
"transportation",
"stand",
"criticism",
"flow",
"door",
"injury",
"insect",
"surprise",
"apartment",
] # pylint: disable=line-too-long
# ISO 639-1 codes to language names.
LANGUAGE_CODES = immutabledict.immutabledict(
{
"en": "English",
"es": "Spanish",
"pt": "Portuguese",
"ar": "Arabic",
"hi": "Hindi",
"fr": "French",
"ru": "Russian",
"de": "German",
"ja": "Japanese",
"it": "Italian",
"bn": "Bengali",
"uk": "Ukrainian",
"th": "Thai",
"ur": "Urdu",
"ta": "Tamil",
"te": "Telugu",
"bg": "Bulgarian",
"ko": "Korean",
"pl": "Polish",
"he": "Hebrew",
"fa": "Persian",
"vi": "Vietnamese",
"ne": "Nepali",
"sw": "Swahili",
"kn": "Kannada",
"mr": "Marathi",
"gu": "Gujarati",
"pa": "Punjabi",
"ml": "Malayalam",
"fi": "Finnish",
}
)
_ALPHABETS = "([A-Za-z])"
_PREFIXES = "(Mr|St|Mrs|Ms|Dr)[.]"
_SUFFIXES = "(Inc|Ltd|Jr|Sr|Co)"
_STARTERS = r"(Mr|Mrs|Ms|Dr|Prof|Capt|Cpt|Lt|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
_ACRONYMS = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
_WEBSITES = "[.](com|net|org|io|gov|edu|me)"
_DIGITS = "([0-9])"
_MULTIPLE_DOTS = r"\.{2,}"
def split_into_sentences(text):
"""Split the text into sentences.
Args:
text: A string that consists of more than or equal to one sentences.
Returns:
A list of strings where each string is a sentence.
"""
text = " " + text + " "
text = text.replace("\n", " ")
text = re.sub(_PREFIXES, "\\1<prd>", text)
text = re.sub(_WEBSITES, "<prd>\\1", text)
text = re.sub(_DIGITS + "[.]" + _DIGITS, "\\1<prd>\\2", text)
text = re.sub(
_MULTIPLE_DOTS,
lambda match: "<prd>" * len(match.group(0)) + "<stop>",
text,
)
if "Ph.D" in text:
text = text.replace("Ph.D.", "Ph<prd>D<prd>")
text = re.sub(r"\s" + _ALPHABETS + "[.] ", " \\1<prd> ", text)
text = re.sub(_ACRONYMS + " " + _STARTERS, "\\1<stop> \\2", text)
text = re.sub(
_ALPHABETS + "[.]" + _ALPHABETS + "[.]" + _ALPHABETS + "[.]",
"\\1<prd>\\2<prd>\\3<prd>",
text,
)
text = re.sub(_ALPHABETS + "[.]" + _ALPHABETS + "[.]", "\\1<prd>\\2<prd>", text)
text = re.sub(" " + _SUFFIXES + "[.] " + _STARTERS, " \\1<stop> \\2", text)
text = re.sub(" " + _SUFFIXES + "[.]", " \\1<prd>", text)
text = re.sub(" " + _ALPHABETS + "[.]", " \\1<prd>", text)
if "”" in text:
text = text.replace(".”", "”.")
if '"' in text:
text = text.replace('."', '".')
if "!" in text:
text = text.replace('!"', '"!')
if "?" in text:
text = text.replace('?"', '"?')
text = text.replace(".", ".<stop>")
text = text.replace("?", "?<stop>")
text = text.replace("!", "!<stop>")
text = text.replace("<prd>", ".")
sentences = text.split("<stop>")
sentences = [s.strip() for s in sentences]
if sentences and not sentences[-1]:
sentences = sentences[:-1]
return sentences
def count_words(text):
"""Counts the number of words."""
tokenizer = nltk.tokenize.RegexpTokenizer(r"\w+")
tokens = tokenizer.tokenize(text)
num_words = len(tokens)
return num_words
@functools.lru_cache(maxsize=None)
def _get_sentence_tokenizer():
return nltk.data.load("nltk:tokenizers/punkt/english.pickle")
def count_sentences(text):
"""Count the number of sentences."""
tokenizer = _get_sentence_tokenizer()
tokenized_sentences = tokenizer.tokenize(text)
return len(tokenized_sentences)
def generate_keywords(num_keywords):
"""Randomly generates a few keywords."""
return random.sample(WORD_LIST, k=num_keywords)
import dataclasses
from typing import Dict, Optional, Union
from lm_eval.tasks.ifeval import instructions_registry
from lm_eval.utils import eval_logger
@dataclasses.dataclass
class InputExample:
key: int
instruction_id_list: list[str]
prompt: str
kwargs: list[Dict[str, Optional[Union[str, int]]]]
@dataclasses.dataclass
class OutputExample:
instruction_id_list: list[str]
prompt: str
response: str
follow_all_instructions: bool
follow_instruction_list: list[bool]
def test_instruction_following_strict(
inp,
response,
):
"""Tests response to see if instructions are followed."""
instruction_list = inp.instruction_id_list
is_following_list = []
for index, instruction_id in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and "prompt" in args:
instruction.build_description(prompt=inp.prompt)
if response.strip() and instruction.check_following(response):
is_following_list.append(True)
else:
is_following_list.append(False)
return OutputExample(
instruction_id_list=inp.instruction_id_list,
prompt=inp.prompt,
response=response,
follow_all_instructions=all(is_following_list),
follow_instruction_list=is_following_list,
)
def test_instruction_following_loose(
inp,
response,
):
"""Tests response for an upper bound for following instructions."""
r = response.split("\n")
response_remove_first = "\n".join(r[1:]).strip()
response_remove_last = "\n".join(r[:-1]).strip()
response_remove_both = "\n".join(r[1:-1]).strip()
revised_response = response.replace("*", "")
revised_response_remove_first = response_remove_first.replace("*", "")
revised_response_remove_last = response_remove_last.replace("*", "")
revised_response_remove_both = response_remove_both.replace("*", "")
all_responses = [
response,
revised_response,
response_remove_first,
response_remove_last,
response_remove_both,
revised_response_remove_first,
revised_response_remove_last,
revised_response_remove_both,
]
instruction_list = inp.instruction_id_list
is_following_list = []
for index, instruction_id in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and "prompt" in args:
instruction.build_description(prompt=inp.prompt)
is_following = False
for r in all_responses:
if r.strip() and instruction.check_following(r):
is_following = True
break
is_following_list.append(is_following)
return OutputExample(
instruction_id_list=inp.instruction_id_list,
prompt=inp.prompt,
response=response,
follow_all_instructions=all(is_following_list),
follow_instruction_list=is_following_list,
)
def process_results(doc, results):
eval_logger.warning(
"This task is meant for chat-finetuned models, and may not give meaningful results for models other than `openai` or `anthropic` if `doc_to_text` in its YAML is not wrapped in the appropriate chat template string. This warning will be removed when chat templating support is added natively to local models"
)
inp = InputExample(
key=doc["key"],
instruction_id_list=doc["instruction_id_list"],
prompt=doc["prompt"],
kwargs=doc["kwargs"],
)
response = results[0]
out_strict = test_instruction_following_strict(inp, response)
out_loose = test_instruction_following_loose(inp, response)
return {
"prompt_level_strict_acc": out_strict.follow_all_instructions,
"inst_level_strict_acc": out_strict.follow_instruction_list,
"prompt_level_loose_acc": out_loose.follow_all_instructions,
"inst_level_loose_acc": out_loose.follow_instruction_list,
}
def agg_inst_level_acc(items):
flat_items = [item for sublist in items for item in sublist]
inst_level_acc = sum(flat_items) / len(flat_items)
return inst_level_acc
......@@ -70,8 +70,9 @@ promptsource = [
]
gptq = ["auto-gptq[triton] @ git+https://github.com/PanQiWei/AutoGPTQ"]
anthropic = ["anthropic"]
openai = ["openai>=1.3.5", "tiktoken"]
openai = ["openai==1.3.9", "tiktoken"]
vllm = ["vllm"]
ifeval = ["langdetect", "immutabledict"]
all = [
"lm_eval[dev]",
"lm_eval[testing]",
......@@ -83,4 +84,5 @@ all = [
"lm_eval[anthropic]",
"lm_eval[openai]",
"lm_eval[vllm]",
"lm_eval[ifeval]",
]
......@@ -2,6 +2,7 @@ import argparse
import numpy as np
import lm_eval.evaluator
from lm_eval import tasks
from lm_eval import utils
import scipy.stats
from typing import Tuple, Dict, List
import pandas as pd
......@@ -9,7 +10,13 @@ import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
eval_logger = lm_eval.utils.eval_logger
eval_logger = utils.eval_logger
def memory_stats():
eval_logger.info(
f"Memory allocated: {torch.cuda.memory_allocated() / 1024 ** 2}, reserved: {torch.cuda.memory_reserved() // 1024 ** 2}"
)
def calculate_z_value(res1: Dict, res2: Dict) -> Tuple[float, float]:
......@@ -103,7 +110,10 @@ if __name__ == "__main__":
device=args.device,
batch_size=args.batch,
)
torch.cuda.empty_cache()
memory_stats()
utils.clear_torch_cache()
eval_logger.info("Memory stats cleared")
memory_stats()
results_hf = lm_eval.evaluator.simple_evaluate(
model="hf",
model_args=f"pretrained={args.pretrained}" + hf_args,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment