Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
383318fe
Commit
383318fe
authored
Apr 28, 2022
by
KhalidAlt
Browse files
add lama task
parent
567e24c9
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
402 additions
and
1 deletion
+402
-1
lm_eval/tasks/TyDiQA.py
lm_eval/tasks/TyDiQA.py
+110
-0
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+8
-1
lm_eval/tasks/lama.py
lm_eval/tasks/lama.py
+284
-0
No files found.
lm_eval/tasks/TyDiQA.py
0 → 100644
View file @
383318fe
"""
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
https://arxiv.org/abs/1902.01007
A controlled evaluation set called HANS (Heuristic Analysis for NLI Systems),
which contains many examples where the heuristics fail.
Homepage: https://github.com/tommccoy1/hans
"""
from
lm_eval.base
import
PromptSourceTask
_CITATION
=
"""
\
@article{tydiqa,
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
year = {2020},
journal = {Transactions of the Association for Computational Linguistics}
}
"""
class
Primary
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"tydiqa"
DATASET_NAME
=
"primary_task"
def
has_training_docs
(
self
):
return
True
def
has_validation_docs
(
self
):
return
True
def
has_test_docs
(
self
):
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
# We cache training documents in `self._training_docs` for faster
# few-shot processing. If the data is too large to fit in memory,
# return the training data as a generator instead of a list.
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
print
(
"############"
)
print
(
self
.
doc_to_target
(
doc
))
target
=
self
.
doc_to_target
(
doc
)[
'sub_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
#result = metric.compute(predictions=pred, references=gold)
#out['acc'] = {"accuracy": result["score"]}
#out['acc'] = 1.0 if pred == gold else 0.0
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
class
Secondary
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"tydiqa"
DATASET_NAME
=
"secondary_task"
def
has_training_docs
(
self
):
return
True
def
has_validation_docs
(
self
):
return
True
def
has_test_docs
(
self
):
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
# We cache training documents in `self._training_docs` for faster
# few-shot processing. If the data is too large to fit in memory,
# return the training data as a generator instead of a list.
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"validation"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
lm_eval/tasks/__init__.py
View file @
383318fe
...
@@ -54,7 +54,8 @@ from . import gsm8k
...
@@ -54,7 +54,8 @@ from . import gsm8k
from
.
import
storycloze
from
.
import
storycloze
from
.
import
hans
from
.
import
hans
from
.
import
gem_webnlg
from
.
import
gem_webnlg
from
.
import
TyDiQA
from
.
import
lama
# from . import e2e_nlg_cleaned
# from . import e2e_nlg_cleaned
########################################
########################################
...
@@ -133,6 +134,10 @@ TASK_REGISTRY = {
...
@@ -133,6 +134,10 @@ TASK_REGISTRY = {
"arc_easy"
:
arc
.
ARCEasy
,
"arc_easy"
:
arc
.
ARCEasy
,
"arc_challenge"
:
arc
.
ARCChallenge
,
"arc_challenge"
:
arc
.
ARCChallenge
,
# "quac": quac.QuAC, # not implemented yet
# "quac": quac.QuAC, # not implemented yet
"lama_trex"
:
lama
.
Trex
,
"lama_squad"
:
lama
.
Squad
,
"lama_google_re"
:
lama
.
google_re
,
"lama_concptnet"
:
lama
.
Conceptnet
,
"logiqa"
:
logiqa
.
LogiQA
,
"logiqa"
:
logiqa
.
LogiQA
,
"hellaswag"
:
hellaswag
.
HellaSwag
,
"hellaswag"
:
hellaswag
.
HellaSwag
,
"openbookqa"
:
openbookqa
.
OpenBookQA
,
"openbookqa"
:
openbookqa
.
OpenBookQA
,
...
@@ -156,6 +161,8 @@ TASK_REGISTRY = {
...
@@ -156,6 +161,8 @@ TASK_REGISTRY = {
"ethics_utilitarianism_original"
:
hendrycks_ethics
.
EthicsUtilitarianismOriginal
,
"ethics_utilitarianism_original"
:
hendrycks_ethics
.
EthicsUtilitarianismOriginal
,
"ethics_utilitarianism"
:
hendrycks_ethics
.
EthicsUtilitarianism
,
"ethics_utilitarianism"
:
hendrycks_ethics
.
EthicsUtilitarianism
,
"ethics_virtue"
:
hendrycks_ethics
.
EthicsVirtue
,
"ethics_virtue"
:
hendrycks_ethics
.
EthicsVirtue
,
"tydiqa_primary"
:
TyDiQA
.
Primary
,
"tydiqa_secondary"
:
TyDiQA
.
Secondary
,
"truthfulqa_mc"
:
truthfulqa
.
TruthfulQAMultipleChoice
,
"truthfulqa_mc"
:
truthfulqa
.
TruthfulQAMultipleChoice
,
"truthfulqa_gen"
:
truthfulqa
.
TruthfulQAGeneration
,
"truthfulqa_gen"
:
truthfulqa
.
TruthfulQAGeneration
,
# dialogue
# dialogue
...
...
lm_eval/tasks/lama.py
0 → 100644
View file @
383318fe
"""
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
https://arxiv.org/abs/1902.01007
A controlled evaluation set called HANS (Heuristic Analysis for NLI Systems),
which contains many examples where the heuristics fail.
Homepage: https://github.com/tommccoy1/hans
"""
from
lm_eval.base
import
PromptSourceTask
import
numpy
as
np
from
lm_eval.metrics
import
mean
from
lm_eval
import
metrics
,
utils
from
typing
import
Iterable
,
Optional
_CITATION
=
"""
@inproceedings{petroni2019language, title={Language Models as Knowledge Bases?},
author={F. Petroni, T. Rockt{"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019}, year={2019} }
@inproceedings{petroni2020how,
title={How Context Affects Language Models' Factual Predictions},
author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
booktitle={Automated Knowledge Base Construction}, year={2020}, url={https://openreview.net/forum?id=025X0zPfn} }
"""
class
Trex
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"trex"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
True
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
True
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"train"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
#result = metric.compute(predictions=pred, references=gold)
#out['acc'] = {"accuracy": result["score"]}
#out['acc'] = 1.0 if pred == gold else 0.0
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
google_re
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"google_re"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
True
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
True
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"train"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
#result = metric.compute(predictions=pred, references=gold)
#out['acc'] = {"accuracy": result["score"]}
#out['acc'] = 1.0 if pred == gold else 0.0
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
Conceptnet
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"conceptnet"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
True
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
True
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"train"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
#result = metric.compute(predictions=pred, references=gold)
#out['acc'] = {"accuracy": result["score"]}
#out['acc'] = 1.0 if pred == gold else 0.0
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
class
Squad
(
PromptSourceTask
):
VERSION
=
0
DATASET_PATH
=
"lama"
DATASET_NAME
=
"squad"
def
has_training_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has training data; else `False`.
return
True
def
has_validation_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has validation data; else `False`.
return
True
def
has_test_docs
(
self
):
# TODO: Fill in the return with `True` if the Task has test data; else `False`.
return
False
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
dataset
[
"train"
])
return
self
.
_training_docs
def
validation_docs
(
self
):
if
self
.
has_validation_docs
():
return
self
.
dataset
[
"train"
]
def
test_docs
(
self
):
if
self
.
has_test_docs
():
return
self
.
dataset
[
"test"
]
def
process_results
(
self
,
doc
,
results
):
out
=
{}
#gold = doc
pred
=
results
[
0
].
strip
()
print
(
"################"
)
print
(
pred
)
target
=
self
.
doc_to_target
(
doc
)[
'obj_label'
]
#pred = np.argmax(results)
out
[
"acc"
]
=
pred
==
target
#result = metric.compute(predictions=pred, references=gold)
#out['acc'] = {"accuracy": result["score"]}
#out['acc'] = 1.0 if pred == gold else 0.0
if
self
.
save_examples
:
example
=
{
"pred"
:
pred
,
"target"
:
target
,
}
return
out
,
example
return
out
def
higher_is_better
(
self
):
return
{
"acc"
:
True
}
def
aggregation
(
self
):
return
{
"acc"
:
mean
}
def
doc_to_target
(
self
,
doc
):
return
doc
def
max_generation_length
(
self
)
->
Optional
[
int
]:
"""Denote where the max length of the generation if it is obvious from the task."""
return
5
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment