Commit 2dc436fa authored by Ashvin Nihalani's avatar Ashvin Nihalani
Browse files

Ruff Linter Checks

parent 1dda496f
......@@ -26,7 +26,7 @@ from tqdm import tqdm
from lm_eval import utils
from lm_eval.api import samplers
from lm_eval.api.instance import Instance, OutputType, InputType
from lm_eval.api.instance import InputType, Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
from lm_eval.api.registry import (
AGGREGATION_REGISTRY,
......@@ -1279,7 +1279,7 @@ class ConfigurableTask(Task):
raise TypeError
def doc_to_visual(self, doc:dict) -> Union[int, str, list]:
if type(self.config.doc_to_visual) is str:
if isinstance(self.config.doc_to_visual, str):
assert self.config.doc_to_visual in self.features
# Single Image. Still return a list for consistency
return doc[self.config.doc_to_visual]
......
......@@ -3,9 +3,9 @@ from . import (
dummy,
gguf,
huggingface,
llava,
mamba_lm,
nemo_lm,
llava,
neuralmagic,
neuron_optimum,
openai_completions,
......
import copy
import logging
import warnings
from typing import List, Optional, Tuple, Union
import torch
from accelerate import Accelerator, DistributedType
from accelerate.state import AcceleratorState
from tqdm import tqdm
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from accelerate import Accelerator, DistributedType
from accelerate.state import AcceleratorState
import logging
import torch
from typing import List, Optional, Union, Tuple
import warnings
from lm_eval.models.utils import Collator
warnings.filterwarnings("ignore")
eval_logger = logging.getLogger("lm-eval")
try:
from llava.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from llava.conversation import conv_templates
from llava.mm_utils import (
get_model_name_from_path,
process_images,
tokenizer_image_token,
)
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, \
IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
except ImportError:
eval_logger.error("LLaVA is not installed. Please install LLaVA to use this model.")
......@@ -168,7 +175,7 @@ class Llava(LM):
for contexts, doc_to_target, doc_to_visual, doc, task in [reg.args for reg in requests]:
# encode, pad, and truncate contexts for this batch
if type(doc_to_target) == str:
if isinstance(doc_to_target, str):
continuation = doc_to_target
else:
continuation = doc_to_target(doc)
......@@ -176,7 +183,7 @@ class Llava(LM):
visuals = self.flatten(visuals)
if visuals:
image = process_images(visuals, self._image_processor, self._config)
if type(image) is list:
if isinstance(image, list):
image = [_image.to(dtype=torch.float16, device=self.device) for _image in image]
else:
image = image.to(dtype=torch.float16, device=self.device)
......@@ -200,7 +207,6 @@ class Llava(LM):
conv.append_message(conv.roles[0], prompts_input)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
contxt_id = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(
0).to(self.device)
# Add the answer of the second role
......@@ -291,7 +297,7 @@ class Llava(LM):
# encode, pad, and truncate contexts for this batch
if visuals:
image_tensor = process_images(visuals, self._image_processor, self._config)
if type(image_tensor) is list:
if isinstance(image_tensor, list):
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
......@@ -360,6 +366,7 @@ class Llava(LM):
attention_mask=attention_masks,
pad_token_id=pad_token_ids,
images=image_tensor,
image_sizes=gen_kwargs["image_sizes"],
do_sample=gen_kwargs["do_sample"],
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
......
from collections import defaultdict
import re
import ast
import logging
import random
import re
from collections import defaultdict
import numpy as np
import logging
lmms_logger = logging.getLogger("lm-eval")
......
......@@ -10,7 +10,7 @@ import os
import re
from dataclasses import asdict, is_dataclass
from itertools import islice
from typing import Any, Callable, List, Union, Tuple, Iterable, Optional, Iterator
from typing import Any, Callable, Iterable, Iterator, List, Optional, Tuple, Union
import numpy as np
import yaml
......@@ -364,7 +364,7 @@ def make_table(result_dict, column: str = "results", sort_results: bool = True):
se = dic[m + "_stderr" + "," + f]
if se != "N/A":
se = "%.4f" % se
if type(v) is dict:
if isinstance(v, dict):
for v_key, v_v in v.items():
values.append([k, version, f, n, m + "_" + v_key, "%.4f" % v_v, "±", se])
else:
......
......@@ -66,7 +66,7 @@ ifeval = ["langdetect", "immutabledict"]
neuronx = ["optimum[neuronx]"]
mamba = ["mamba_ssm", "causal-conv1d==1.0.2"]
math = ["sympy>=1.12", "antlr4-python3-runtime==4.11"]
mllm = ["transformers >= 4.40.0", "llava-torch==1.1.1"]
mllm = ["transformers >= 4.40.0", "llava-torch == 1.0 @ git+https://github.com/haotian-liu/LLaVA.git"]
multilingual = ["nagisa>=0.2.7", "jieba>=0.42.1", "pycountry"]
openai = ["openai==1.3.9", "tiktoken"]
optimum = ["optimum[openvino]"]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment