Unverified Commit 2d0a6460 authored by Baber Abbasi's avatar Baber Abbasi Committed by GitHub
Browse files

Refactor utilities into a separate model utils file. (#1429)

parent 620d6a15
...@@ -5,7 +5,7 @@ from tqdm import tqdm ...@@ -5,7 +5,7 @@ from tqdm import tqdm
from lm_eval import utils from lm_eval import utils
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.utils import retry_on_specific_exceptions from lm_eval.models.utils import retry_on_specific_exceptions
eval_logger = utils.eval_logger eval_logger = utils.eval_logger
......
...@@ -26,7 +26,13 @@ from lm_eval import utils ...@@ -26,7 +26,13 @@ from lm_eval import utils
from lm_eval.api.instance import Instance from lm_eval.api.instance import Instance
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.utils import Collator, stop_sequences_criteria from lm_eval.models.utils import (
Collator,
clear_torch_cache,
get_dtype,
pad_and_concat,
stop_sequences_criteria,
)
eval_logger = utils.eval_logger eval_logger = utils.eval_logger
...@@ -503,13 +509,13 @@ class HFLM(LM): ...@@ -503,13 +509,13 @@ class HFLM(LM):
if transformers.__version__ >= "4.30.0": if transformers.__version__ >= "4.30.0":
if model_kwargs.get("load_in_4bit", None): if model_kwargs.get("load_in_4bit", None):
if model_kwargs.get("bnb_4bit_compute_dtype", None): if model_kwargs.get("bnb_4bit_compute_dtype", None):
model_kwargs["bnb_4bit_compute_dtype"] = utils.get_dtype( model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
model_kwargs["bnb_4bit_compute_dtype"] model_kwargs["bnb_4bit_compute_dtype"]
) )
self._model = self.AUTO_MODEL_CLASS.from_pretrained( self._model = self.AUTO_MODEL_CLASS.from_pretrained(
pretrained, pretrained,
revision=revision, revision=revision,
torch_dtype=utils.get_dtype(dtype), torch_dtype=get_dtype(dtype),
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
**model_kwargs, **model_kwargs,
) )
...@@ -639,10 +645,10 @@ class HFLM(LM): ...@@ -639,10 +645,10 @@ class HFLM(LM):
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist() self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
) )
batch_size = min(gathered) batch_size = min(gathered)
utils.clear_torch_cache() clear_torch_cache()
return batch_size return batch_size
utils.clear_torch_cache() clear_torch_cache()
return batch_size return batch_size
def tok_encode( def tok_encode(
...@@ -997,18 +1003,18 @@ class HFLM(LM): ...@@ -997,18 +1003,18 @@ class HFLM(LM):
# create encoder attn mask and batched conts, if seq2seq # create encoder attn mask and batched conts, if seq2seq
call_kwargs = {} call_kwargs = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
batched_inps = utils.pad_and_concat( batched_inps = pad_and_concat(
padding_len_inp, inps, padding_side="right" padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp] ) # [batch, padding_len_inp]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM: elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# TODO: left-pad encoder inps and mask? # TODO: left-pad encoder inps and mask?
batched_inps = utils.pad_and_concat( batched_inps = pad_and_concat(
padding_len_inp, inps padding_len_inp, inps
) # [batch, padding_len_inp] ) # [batch, padding_len_inp]
batched_conts = utils.pad_and_concat( batched_conts = pad_and_concat(
padding_len_cont, conts padding_len_cont, conts
) # [batch, padding_len_cont] ) # [batch, padding_len_cont]
batched_encoder_mask = utils.pad_and_concat( batched_encoder_mask = pad_and_concat(
padding_len_inp, encoder_attns padding_len_inp, encoder_attns
) # [batch, padding_len_inp] ) # [batch, padding_len_inp]
call_kwargs = { call_kwargs = {
......
...@@ -2,7 +2,7 @@ from typing import Optional, Union ...@@ -2,7 +2,7 @@ from typing import Optional, Union
import torch import torch
from lm_eval import utils import lm_eval.models.utils
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM from lm_eval.models.huggingface import HFLM
...@@ -97,7 +97,9 @@ please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba ...@@ -97,7 +97,9 @@ please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba
self._model = MambaLMHeadModel.from_pretrained( self._model = MambaLMHeadModel.from_pretrained(
pretrained, pretrained,
device=self._device, device=self._device,
dtype=torch.float16 if dtype == "auto" else utils.get_dtype(dtype), dtype=torch.float16
if dtype == "auto"
else lm_eval.models.utils.get_dtype(dtype),
) )
def _model_generate(self, context, max_length, stop, **generation_kwargs): def _model_generate(self, context, max_length, stop, **generation_kwargs):
......
...@@ -13,10 +13,11 @@ from tqdm import tqdm ...@@ -13,10 +13,11 @@ from tqdm import tqdm
from transformers import GenerationConfig from transformers import GenerationConfig
from transformers.generation import StoppingCriteriaList from transformers.generation import StoppingCriteriaList
import lm_eval.models.utils
from lm_eval import utils from lm_eval import utils
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.utils import stop_sequences_criteria from lm_eval.models.utils import stop_sequences_criteria
try: try:
...@@ -239,7 +240,7 @@ class NEURON_HF(LM): ...@@ -239,7 +240,7 @@ class NEURON_HF(LM):
revision=revision, revision=revision,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
torch_dtype = utils.get_dtype(dtype) torch_dtype = lm_eval.models.utils.get_dtype(dtype)
assert torch_dtype in [ assert torch_dtype in [
torch.float16, torch.float16,
...@@ -550,7 +551,7 @@ class NEURON_HF(LM): ...@@ -550,7 +551,7 @@ class NEURON_HF(LM):
# automatic (variable) batch size detection for vectorization # automatic (variable) batch size detection for vectorization
# pull longest context sample from request # pull longest context sample from request
chunks = utils.chunks( chunks = lm_eval.models.utils.chunks(
re_ord.get_reordered(), re_ord.get_reordered(),
n=self.batch_size, n=self.batch_size,
fn=None, fn=None,
...@@ -603,7 +604,7 @@ class NEURON_HF(LM): ...@@ -603,7 +604,7 @@ class NEURON_HF(LM):
# create encoder attn mask and batched conts, if seq2seq # create encoder attn mask and batched conts, if seq2seq
call_kwargs = {} call_kwargs = {}
batched_inps = utils.pad_and_concat( batched_inps = lm_eval.models.utils.pad_and_concat(
padding_len_inp, inps, padding_side="right" padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp] ) # [batch, padding_len_inp]
...@@ -663,7 +664,7 @@ class NEURON_HF(LM): ...@@ -663,7 +664,7 @@ class NEURON_HF(LM):
# we group requests by their generation_kwargs, # we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch. # in the same batch.
grouper = utils.Grouper(requests, lambda x: str(x.args[1])) grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items(): for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending. # within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate) re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
...@@ -672,7 +673,9 @@ class NEURON_HF(LM): ...@@ -672,7 +673,9 @@ class NEURON_HF(LM):
# for each different set of kwargs, we execute all requests, by batch. # for each different set of kwargs, we execute all requests, by batch.
for key, re_ord in re_ords.items(): for key, re_ord in re_ords.items():
chunks = utils.chunks(re_ord.get_reordered(), n=self.batch_size) chunks = lm_eval.models.utils.chunks(
re_ord.get_reordered(), n=self.batch_size
)
for chunk in tqdm(chunks, disable=self.rank != 0): for chunk in tqdm(chunks, disable=self.rank != 0):
contexts, all_gen_kwargs = zip(*chunk) contexts, all_gen_kwargs = zip(*chunk)
# we assume all gen kwargs in the batch are the same # we assume all gen kwargs in the batch are the same
......
...@@ -6,10 +6,12 @@ from typing import List, Literal, Optional, Tuple ...@@ -6,10 +6,12 @@ from typing import List, Literal, Optional, Tuple
from tqdm import tqdm from tqdm import tqdm
import lm_eval.models.utils
from lm_eval import utils from lm_eval import utils
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.utils import eval_logger, retry_on_specific_exceptions from lm_eval.models.utils import retry_on_specific_exceptions
from lm_eval.utils import eval_logger
def get_result(response, ctxlen: int) -> Tuple[float, bool]: def get_result(response, ctxlen: int) -> Tuple[float, bool]:
...@@ -219,7 +221,7 @@ class OpenaiCompletionsLM(LM): ...@@ -219,7 +221,7 @@ class OpenaiCompletionsLM(LM):
re_ord = utils.Reorderer(requests, _collate) re_ord = utils.Reorderer(requests, _collate)
for chunk in tqdm( for chunk in tqdm(
list(utils.chunks(re_ord.get_reordered(), self.batch_size)), list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)),
disable=disable_tqdm, disable=disable_tqdm,
): ):
inps = [] inps = []
...@@ -429,7 +431,7 @@ class OpenaiChatCompletionsLM(LM): ...@@ -429,7 +431,7 @@ class OpenaiChatCompletionsLM(LM):
# we group requests by their generation_kwargs, # we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch. # in the same batch.
grouper = utils.Grouper(requests, lambda x: str(x.args[1])) grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items(): for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending. # within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer( re_ords[key] = utils.Reorderer(
...@@ -441,7 +443,7 @@ class OpenaiChatCompletionsLM(LM): ...@@ -441,7 +443,7 @@ class OpenaiChatCompletionsLM(LM):
# n needs to be 1 because messages in # n needs to be 1 because messages in
# chat completion are not batch but # chat completion are not batch but
# is regarded as a single conversation. # is regarded as a single conversation.
chunks = utils.chunks(re_ord.get_reordered(), n=1) chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1)
for chunk in chunks: for chunk in chunks:
contexts, all_gen_kwargs = zip(*chunk) contexts, all_gen_kwargs = zip(*chunk)
inps = [{"role": "user", "content": context} for context in contexts] inps = [{"role": "user", "content": context} for context in contexts]
......
...@@ -19,7 +19,7 @@ from tqdm import tqdm ...@@ -19,7 +19,7 @@ from tqdm import tqdm
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.utils import retry_on_specific_exceptions from lm_eval.models.utils import retry_on_specific_exceptions
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
import collections
import fnmatch
import gc
import time
from functools import wraps
from typing import (
Any,
Callable,
Iterable,
Iterator,
List,
Literal,
Optional,
Tuple,
Type,
Union,
)
import torch
import transformers
from lm_eval.utils import eval_logger
def chunks(iter, n: int = 0, fn=None):
"""
Divides an iterable into chunks of specified size or based on a given function.
Useful for batching
Parameters:
- iter: The input iterable to be divided into chunks.
- n: An integer representing the size of each chunk. Default is 0.
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
Returns:
An iterator that yields chunks of the input iterable.
Example usage:
```
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for chunk in chunks(data, 3):
print(chunk)
```
Output:
```
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
"""
arr = []
for i, x in enumerate(iter):
arr.append(x)
if len(arr) == (fn(i, iter) if fn else n):
yield arr
arr = []
if arr:
yield arr
class MultiChoice:
def __init__(self, choices) -> None:
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values) -> bool:
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
eval_logger.info("Available tasks to choose:")
for choice in self.choices:
eval_logger.info(f" - {choice}")
raise ValueError("'{}' is not in task list".format(value))
return True
def __iter__(self) -> Iterator:
for choice in self.choices:
yield choice
class Grouper:
"""
takes an array `arr` and function `fn` and returns a dictionary
with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
objects in `arr` satisfying `key == fn(ob)`.
"""
def __init__(self, arr, fn) -> None:
# self.orig_arr = arr
self.size = len(arr)
arr = list(enumerate(arr))
def group_return_dict(arr, fn):
res = collections.defaultdict(list)
for ob in arr:
res[fn(ob)].append(ob)
return res
arr = group_return_dict(arr, lambda x: fn(x[1]))
# self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
self.arr = arr
self._grouped = None
def get_grouped(self):
# return the contents but not indices for our grouped dict.
if self._grouped:
return self._grouped
grouped = {}
for key in self.arr.keys():
# drop the index from each element of self.arr
grouped[key] = [y[1] for y in self.arr[key]]
self._grouped = grouped
return grouped
def get_original(self, grouped_dict):
# take in a grouped dictionary with e.g. results for each key listed
# in the same order as the instances in `self.arr`, and
# return the results in the same (single list) order as `self.orig_arr`.
res = [None] * self.size
cov = [False] * self.size
# orig = [None] * self.size
assert grouped_dict.keys() == self.arr.keys()
for key in grouped_dict.keys():
for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
res[ind] = v
cov[ind] = True
# orig[ind] = _
assert all(cov)
# assert orig == self.orig_arr
return res
def pad_and_concat(
max_length: int,
tensors: List[torch.Tensor],
padding_side: Literal["right", "left"] = "right",
):
"""
Method for padding a list of tensors given the maximum tensor
length in the batch. Used for batching inputs and continuations in
seq2seq models.
"""
assert (
padding_side == "left" or padding_side == "right"
), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
for i, tensor in enumerate(tensors):
if len(tensor.shape) == 2:
tensor = tensor.squeeze(0) # squeeze, in case passed [1, seq] size
tensor_len = tensor.shape[0]
if tensor_len < max_length:
if padding_side == "right":
# right-pad
tensors[i] = torch.cat(
[
tensor, # [seq]
torch.zeros(
max_length - tensor_len,
dtype=torch.long,
device=tensor.device,
), # [padding_length - seq]
],
dim=0,
).unsqueeze(0)
else:
# left-pad
tensors[i] = torch.cat(
[
torch.zeros(
max_length - tensor_len,
dtype=torch.long,
device=tensor.device,
), # [padding_length - seq]
tensor, # [seq]
],
dim=0,
).unsqueeze(0)
else:
tensors[i] = tensor.unsqueeze(0)
return torch.cat(tensors, dim=0)
def clear_torch_cache() -> None:
gc.collect()
torch.cuda.empty_cache()
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
if isinstance(dtype, str) and dtype != "auto":
# Convert `str` args torch dtype: `float16` -> `torch.float16`
_torch_dtype = getattr(torch, dtype)
else:
_torch_dtype = dtype
return _torch_dtype
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
"""Criteria to stop on the specified multi-token sequence."""
def __init__(
self,
sequence: str,
tokenizer: transformers.PreTrainedTokenizer,
initial_decoder_input_length: int,
batch_size: int,
) -> None:
self.initial_decoder_input_length = initial_decoder_input_length
self.done_tracker = [False] * batch_size
self.sequence = sequence
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
# print(sequence, self.sequence_ids)
# we look back for 2 more tokens than it takes to encode our stop sequence
# because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
# and we don't want to mistakenly not stop a generation because our
# (string) stop sequence was output in a different tokenization
# NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
# and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
# Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described.
self.sequence_id_len = len(self.sequence_ids) + 2
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs) -> bool:
# For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :]
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :]
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
for i, done in enumerate(self.done_tracker):
if not done:
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
return False not in self.done_tracker
def stop_sequences_criteria(
tokenizer: transformers.PreTrainedTokenizer,
stop_sequences: List[str],
initial_decoder_input_length: int,
batch_size: int,
) -> transformers.StoppingCriteriaList:
return transformers.StoppingCriteriaList(
[
*[
MultiTokenEOSCriteria(
sequence, tokenizer, initial_decoder_input_length, batch_size
)
for sequence in stop_sequences
],
]
)
def divide(iterable, n) -> List[Iterator]:
"""Divide the elements from *iterable* into *n* parts, maintaining
order.
>>> group_1, group_2 = divide([1, 2, 3, 4, 5, 6], 2)
>>> list(group_1)
[1, 2, 3]
>>> list(group_2)
[4, 5, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = divide([1, 2, 3, 4, 5, 6, 7], 3)
>>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]]
If the length of the iterable is smaller than n, then the last returned
iterables will be empty:
>>> children = divide([1, 2, 3], 5)
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function will exhaust the iterable before returning and may require
significant storage. If order is not important, see :func:`distribute`,
which does not first pull the iterable into memory.
"""
if n < 1:
raise ValueError("n must be at least 1")
try:
iterable[:0]
except TypeError:
seq = tuple(iterable)
else:
seq = iterable
q, r = divmod(len(seq), n)
ret = []
stop = 0
for i in range(1, n + 1):
start = stop
stop += q + 1 if i <= r else q
ret.append(iter(seq[start:stop]))
return ret
def retry_on_specific_exceptions(
on_exceptions: List[Type[Exception]],
max_retries: Optional[int] = None,
backoff_time: float = 3.0,
backoff_multiplier: float = 1.5,
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
):
"""Retry on an LLM Provider's rate limit error with exponential backoff
For example, to use for OpenAI, do the following:
```
from openai import RateLimitError
# Recommend specifying max_retries to avoid infinite loops!
@retry_on_specific_exceptions([RateLimitError], max_retries=3)
def completion(...):
# Wrap OpenAI completion function here
...
```
"""
def decorator(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
sleep_time = backoff_time
attempt = 0
while max_retries is None or attempt < max_retries:
try:
return func(*args, **kwargs)
except tuple(on_exceptions) as e:
if on_exception_callback is not None:
on_exception_callback(e, sleep_time)
time.sleep(sleep_time)
sleep_time *= backoff_multiplier
attempt += 1
return wrapper
return decorator
class Collator:
"""
A class for reordering and batching elements of an array.
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
"""
def __init__(
self,
arr: List,
sort_fn: Callable,
group_fn: Callable = lambda x: x[1],
grouping: bool = False,
) -> None:
self.grouping = grouping
self.fn = sort_fn
self.group_fn = lambda x: group_fn(x[1]) # first index are enumerated indices
self.reorder_indices: List = []
self.size = len(arr)
self.arr_with_indices: Iterable[Any] = tuple(enumerate(arr)) # [indices, (arr)]
if self.grouping is True:
self.group_by_index()
def group_by_index(self) -> None:
self.arr_with_indices = self.group(
self.arr_with_indices, fn=self.group_fn, values=False
)
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
"""
Generates and yields batches from the reordered array.
Parameters:
- n (int): The size of each batch. Defaults to 1.
- batch_fn (Optional[Callable[[int, Iterable], int]]): A function to determine the size of each batch. Defaults to None.
Yields:
Iterator: An iterator over batches of reordered elements.
"""
if self.grouping:
for (
key,
values,
) in self.arr_with_indices.items(): # type: ignore
values = self._reorder(values)
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
else:
values = self._reorder(self.arr_with_indices) # type: ignore
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> List:
"""
Reorders the elements in the array based on the sorting function.
Parameters:
- arr (Union[List, Tuple[Tuple[int, Any], ...]]): The array or iterable to be reordered.
Yields:
List: Yields reordered elements one by one.
"""
arr = sorted(arr, key=lambda x: self.fn(x[1]))
self.reorder_indices.extend([x[0] for x in arr])
yield from [x[1] for x in arr]
def get_original(self, newarr: List) -> List:
"""
Restores the original order of elements from the reordered list.
Parameters:
- newarr (List): The reordered array.
Returns:
List: The array with elements restored to their original order.
"""
res = [None] * self.size
cov = [False] * self.size
for ind, v in zip(self.reorder_indices, newarr):
res[ind] = v
cov[ind] = True
assert all(cov)
return res
def __len__(self):
return self.size
@staticmethod
def group(arr: Iterable, fn: Callable, values: bool = False) -> Iterable:
"""
Groups elements of an iterable based on a provided function.
Parameters:
- arr (Iterable): The iterable to be grouped.
- fn (Callable): The function to determine the grouping.
- values (bool): If True, returns the values of the group. Defaults to False.
Returns:
Iterable: An iterable of grouped elements.
"""
res = collections.defaultdict(list)
for ob in arr:
try:
hashable_dict = tuple(
(
key,
tuple(value)
if isinstance(value, collections.abc.Iterable)
else value,
)
for key, value in sorted(fn(ob).items())
)
res[hashable_dict].append(ob)
except TypeError:
res[fn(ob)].append(ob)
if not values:
return res
return res.values()
@staticmethod
def get_chunks(_iter, n: int = 0, fn=None):
"""
Divides an iterable into chunks of specified size or based on a given function.
Useful for batching
Parameters:
- iter: The input iterable to be divided into chunks.
- n: An integer representing the size of each chunk. Default is 0.
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
Returns:
An iterator that yields chunks of the input iterable.
Example usage:
```
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for chunk in chunks(data, 3):
print(chunk)
```
Output:
```
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
"""
arr = []
_iter = tuple(_iter)
for i, x in enumerate(_iter):
arr.append(x)
if len(arr) == (fn(i, _iter) if fn else n):
yield arr
arr = []
if arr:
yield arr
...@@ -7,9 +7,8 @@ from tqdm import tqdm ...@@ -7,9 +7,8 @@ from tqdm import tqdm
from lm_eval.api.instance import Instance from lm_eval.api.instance import Instance
from lm_eval.api.model import LM from lm_eval.api.model import LM
from lm_eval.api.registry import register_model from lm_eval.api.registry import register_model
from lm_eval.models.utils import Collator, divide
from lm_eval.utils import ( from lm_eval.utils import (
Collator,
divide,
eval_logger, eval_logger,
get_rolling_token_windows, get_rolling_token_windows,
make_disjoint_window, make_disjoint_window,
......
import collections import collections
import fnmatch import fnmatch
import functools import functools
import gc
import importlib.util import importlib.util
import inspect import inspect
import logging import logging
...@@ -10,24 +9,13 @@ import pathlib ...@@ -10,24 +9,13 @@ import pathlib
import re import re
import subprocess import subprocess
import sys import sys
import time
from functools import wraps
from itertools import islice from itertools import islice
from typing import ( from typing import (
Any, Any,
Callable, Callable,
Iterable,
Iterator,
List, List,
Literal,
Optional,
Tuple,
Type,
Union,
) )
import torch
import transformers
import yaml import yaml
from jinja2 import BaseLoader, Environment, StrictUndefined from jinja2 import BaseLoader, Environment, StrictUndefined
...@@ -99,44 +87,6 @@ def join_iters(iters): ...@@ -99,44 +87,6 @@ def join_iters(iters):
yield from iter yield from iter
def chunks(iter, n: int = 0, fn=None):
"""
Divides an iterable into chunks of specified size or based on a given function.
Useful for batching
Parameters:
- iter: The input iterable to be divided into chunks.
- n: An integer representing the size of each chunk. Default is 0.
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
Returns:
An iterator that yields chunks of the input iterable.
Example usage:
```
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for chunk in chunks(data, 3):
print(chunk)
```
Output:
```
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
"""
arr = []
for i, x in enumerate(iter):
arr.append(x)
if len(arr) == (fn(i, iter) if fn else n):
yield arr
arr = []
if arr:
yield arr
def group(arr, fn): def group(arr, fn):
res = collections.defaultdict(list) res = collections.defaultdict(list)
...@@ -146,25 +96,6 @@ def group(arr, fn): ...@@ -146,25 +96,6 @@ def group(arr, fn):
return list(res.values()) return list(res.values())
class MultiChoice:
def __init__(self, choices) -> None:
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values) -> bool:
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
eval_logger.info("Available tasks to choose:")
for choice in self.choices:
eval_logger.info(f" - {choice}")
raise ValueError("'{}' is not in task list".format(value))
return True
def __iter__(self) -> Iterator:
for choice in self.choices:
yield choice
# Returns a list containing all values of the source_list that # Returns a list containing all values of the source_list that
# match at least one of the patterns # match at least one of the patterns
def pattern_match(patterns, source_list): def pattern_match(patterns, source_list):
...@@ -283,64 +214,6 @@ class Reorderer: ...@@ -283,64 +214,6 @@ class Reorderer:
return res return res
class Grouper:
"""
takes an array `arr` and function `fn` and returns a dictionary
with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
objects in `arr` satisfying `key == fn(ob)`.
"""
def __init__(self, arr, fn) -> None:
# self.orig_arr = arr
self.size = len(arr)
arr = list(enumerate(arr))
def group_return_dict(arr, fn):
res = collections.defaultdict(list)
for ob in arr:
res[fn(ob)].append(ob)
return res
arr = group_return_dict(arr, lambda x: fn(x[1]))
# self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
self.arr = arr
self._grouped = None
def get_grouped(self):
# return the contents but not indices for our grouped dict.
if self._grouped:
return self._grouped
grouped = {}
for key in self.arr.keys():
# drop the index from each element of self.arr
grouped[key] = [y[1] for y in self.arr[key]]
self._grouped = grouped
return grouped
def get_original(self, grouped_dict):
# take in a grouped dictionary with e.g. results for each key listed
# in the same order as the instances in `self.arr`, and
# return the results in the same (single list) order as `self.orig_arr`.
res = [None] * self.size
cov = [False] * self.size
# orig = [None] * self.size
assert grouped_dict.keys() == self.arr.keys()
for key in grouped_dict.keys():
for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
res[ind] = v
cov[ind] = True
# orig[ind] = _
assert all(cov)
# assert orig == self.orig_arr
return res
def make_table(result_dict, column: str = "results"): def make_table(result_dict, column: str = "results"):
"""Generate table of results.""" """Generate table of results."""
from pytablewriter import LatexTableWriter, MarkdownTableWriter from pytablewriter import LatexTableWriter, MarkdownTableWriter
...@@ -562,380 +435,7 @@ def create_iterator(raw_iterator, rank, world_size, limit=None): ...@@ -562,380 +435,7 @@ def create_iterator(raw_iterator, rank, world_size, limit=None):
return islice(raw_iterator, rank, limit, world_size) return islice(raw_iterator, rank, limit, world_size)
def pad_and_concat(
max_length: int,
tensors: List[torch.Tensor],
padding_side: Literal["right", "left"] = "right",
):
"""
Method for padding a list of tensors given the maximum tensor
length in the batch. Used for batching inputs and continuations in
seq2seq models.
"""
assert (
padding_side == "left" or padding_side == "right"
), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
for i, tensor in enumerate(tensors):
if len(tensor.shape) == 2:
tensor = tensor.squeeze(0) # squeeze, in case passed [1, seq] size
tensor_len = tensor.shape[0]
if tensor_len < max_length:
if padding_side == "right":
# right-pad
tensors[i] = torch.cat(
[
tensor, # [seq]
torch.zeros(
max_length - tensor_len,
dtype=torch.long,
device=tensor.device,
), # [padding_length - seq]
],
dim=0,
).unsqueeze(0)
else:
# left-pad
tensors[i] = torch.cat(
[
torch.zeros(
max_length - tensor_len,
dtype=torch.long,
device=tensor.device,
), # [padding_length - seq]
tensor, # [seq]
],
dim=0,
).unsqueeze(0)
else:
tensors[i] = tensor.unsqueeze(0)
return torch.cat(tensors, dim=0)
def clear_torch_cache() -> None:
gc.collect()
torch.cuda.empty_cache()
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
if isinstance(dtype, str) and dtype != "auto":
# Convert `str` args torch dtype: `float16` -> `torch.float16`
_torch_dtype = getattr(torch, dtype)
else:
_torch_dtype = dtype
return _torch_dtype
# Multi-token stopping criteria # Multi-token stopping criteria
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
"""Criteria to stop on the specified multi-token sequence."""
def __init__(
self,
sequence: str,
tokenizer: transformers.PreTrainedTokenizer,
initial_decoder_input_length: int,
batch_size: int,
) -> None:
self.initial_decoder_input_length = initial_decoder_input_length
self.done_tracker = [False] * batch_size
self.sequence = sequence
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
# print(sequence, self.sequence_ids)
# we look back for 2 more tokens than it takes to encode our stop sequence
# because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
# and we don't want to mistakenly not stop a generation because our
# (string) stop sequence was output in a different tokenization
# NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
# and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
# Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described.
self.sequence_id_len = len(self.sequence_ids) + 2
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs) -> bool:
# For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :]
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :]
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
for i, done in enumerate(self.done_tracker):
if not done:
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
return False not in self.done_tracker
def stop_sequences_criteria(
tokenizer: transformers.PreTrainedTokenizer,
stop_sequences: List[str],
initial_decoder_input_length: int,
batch_size: int,
) -> transformers.StoppingCriteriaList:
return transformers.StoppingCriteriaList(
[
*[
MultiTokenEOSCriteria(
sequence, tokenizer, initial_decoder_input_length, batch_size
)
for sequence in stop_sequences
],
]
)
# from more_itertools # from more_itertools
def divide(iterable, n) -> List[Iterator]:
"""Divide the elements from *iterable* into *n* parts, maintaining
order.
>>> group_1, group_2 = divide([1, 2, 3, 4, 5, 6], 2)
>>> list(group_1)
[1, 2, 3]
>>> list(group_2)
[4, 5, 6]
If the length of *iterable* is not evenly divisible by *n*, then the
length of the returned iterables will not be identical:
>>> children = divide([1, 2, 3, 4, 5, 6, 7], 3)
>>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]]
If the length of the iterable is smaller than n, then the last returned
iterables will be empty:
>>> children = divide([1, 2, 3], 5)
>>> [list(c) for c in children]
[[1], [2], [3], [], []]
This function will exhaust the iterable before returning and may require
significant storage. If order is not important, see :func:`distribute`,
which does not first pull the iterable into memory.
"""
if n < 1:
raise ValueError("n must be at least 1")
try:
iterable[:0]
except TypeError:
seq = tuple(iterable)
else:
seq = iterable
q, r = divmod(len(seq), n)
ret = []
stop = 0
for i in range(1, n + 1):
start = stop
stop += q + 1 if i <= r else q
ret.append(iter(seq[start:stop]))
return ret
def retry_on_specific_exceptions(
on_exceptions: List[Type[Exception]],
max_retries: Optional[int] = None,
backoff_time: float = 3.0,
backoff_multiplier: float = 1.5,
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
):
"""Retry on an LLM Provider's rate limit error with exponential backoff
For example, to use for OpenAI, do the following:
```
from openai import RateLimitError
# Recommend specifying max_retries to avoid infinite loops!
@retry_on_specific_exceptions([RateLimitError], max_retries=3)
def completion(...):
# Wrap OpenAI completion function here
...
```
"""
def decorator(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
sleep_time = backoff_time
attempt = 0
while max_retries is None or attempt < max_retries:
try:
return func(*args, **kwargs)
except tuple(on_exceptions) as e:
if on_exception_callback is not None:
on_exception_callback(e, sleep_time)
time.sleep(sleep_time)
sleep_time *= backoff_multiplier
attempt += 1
return wrapper
return decorator
class Collator:
"""
A class for reordering and batching elements of an array.
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
"""
def __init__(
self,
arr: List,
sort_fn: Callable,
group_fn: Callable = lambda x: x[1],
grouping: bool = False,
) -> None:
self.grouping = grouping
self.fn = sort_fn
self.group_fn = lambda x: group_fn(x[1]) # first index are enumerated indices
self.reorder_indices: List = []
self.size = len(arr)
self.arr_with_indices: Iterable[Any] = tuple(enumerate(arr)) # [indices, (arr)]
if self.grouping is True:
self.group_by_index()
def group_by_index(self) -> None:
self.arr_with_indices = self.group(
self.arr_with_indices, fn=self.group_fn, values=False
)
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
"""
Generates and yields batches from the reordered array.
Parameters:
- n (int): The size of each batch. Defaults to 1.
- batch_fn (Optional[Callable[[int, Iterable], int]]): A function to determine the size of each batch. Defaults to None.
Yields:
Iterator: An iterator over batches of reordered elements.
"""
if self.grouping:
for (
key,
values,
) in self.arr_with_indices.items(): # type: ignore
values = self._reorder(values)
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
else:
values = self._reorder(self.arr_with_indices) # type: ignore
batch = self.get_chunks(values, n=n, fn=batch_fn)
yield from batch
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> List:
"""
Reorders the elements in the array based on the sorting function.
Parameters:
- arr (Union[List, Tuple[Tuple[int, Any], ...]]): The array or iterable to be reordered.
Yields:
List: Yields reordered elements one by one.
"""
arr = sorted(arr, key=lambda x: self.fn(x[1]))
self.reorder_indices.extend([x[0] for x in arr])
yield from [x[1] for x in arr]
def get_original(self, newarr: List) -> List:
"""
Restores the original order of elements from the reordered list.
Parameters:
- newarr (List): The reordered array.
Returns:
List: The array with elements restored to their original order.
"""
res = [None] * self.size
cov = [False] * self.size
for ind, v in zip(self.reorder_indices, newarr):
res[ind] = v
cov[ind] = True
assert all(cov)
return res
def __len__(self):
return self.size
@staticmethod
def group(arr: Iterable, fn: Callable, values: bool = False) -> Iterable:
"""
Groups elements of an iterable based on a provided function.
Parameters:
- arr (Iterable): The iterable to be grouped.
- fn (Callable): The function to determine the grouping.
- values (bool): If True, returns the values of the group. Defaults to False.
Returns:
Iterable: An iterable of grouped elements.
"""
res = collections.defaultdict(list)
for ob in arr:
try:
hashable_dict = tuple(
(
key,
tuple(value)
if isinstance(value, collections.abc.Iterable)
else value,
)
for key, value in sorted(fn(ob).items())
)
res[hashable_dict].append(ob)
except TypeError:
res[fn(ob)].append(ob)
if not values:
return res
return res.values()
@staticmethod
def get_chunks(_iter, n: int = 0, fn=None):
"""
Divides an iterable into chunks of specified size or based on a given function.
Useful for batching
Parameters:
- iter: The input iterable to be divided into chunks.
- n: An integer representing the size of each chunk. Default is 0.
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
Returns:
An iterator that yields chunks of the input iterable.
Example usage:
```
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for chunk in chunks(data, 3):
print(chunk)
```
Output:
```
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
"""
arr = []
_iter = tuple(_iter)
for i, x in enumerate(_iter):
arr.append(x)
if len(arr) == (fn(i, _iter) if fn else n):
yield arr
arr = []
if arr:
yield arr
...@@ -8,6 +8,7 @@ import scipy.stats ...@@ -8,6 +8,7 @@ import scipy.stats
import torch import torch
import lm_eval.evaluator import lm_eval.evaluator
import lm_eval.models.utils
from lm_eval import tasks, utils from lm_eval import tasks, utils
...@@ -113,7 +114,7 @@ if __name__ == "__main__": ...@@ -113,7 +114,7 @@ if __name__ == "__main__":
batch_size=args.batch, batch_size=args.batch,
) )
memory_stats() memory_stats()
utils.clear_torch_cache() lm_eval.models.utils.clear_torch_cache()
eval_logger.info("Memory stats cleared") eval_logger.info("Memory stats cleared")
memory_stats() memory_stats()
results_hf = lm_eval.evaluator.simple_evaluate( results_hf = lm_eval.evaluator.simple_evaluate(
......
...@@ -9,8 +9,8 @@ from lm_eval.api.metrics import ( ...@@ -9,8 +9,8 @@ from lm_eval.api.metrics import (
pooled_sample_stderr, pooled_sample_stderr,
stderr_for_metric, stderr_for_metric,
) )
from lm_eval.models.utils import Collator
from lm_eval.utils import ( from lm_eval.utils import (
Collator,
get_rolling_token_windows, get_rolling_token_windows,
make_disjoint_window, make_disjoint_window,
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment