Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
26f19561
Commit
26f19561
authored
Apr 24, 2023
by
ingyuseong
Browse files
Add KorUnSmile task
parent
cc7650d8
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
74 additions
and
1 deletion
+74
-1
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+3
-1
lm_eval/tasks/korunsmile.py
lm_eval/tasks/korunsmile.py
+71
-0
No files found.
lm_eval/tasks/__init__.py
View file @
26f19561
...
...
@@ -56,6 +56,7 @@ from . import nsmc
from
.
import
klue
from
.
import
ko_translation
from
.
import
korquad
from
.
import
korunsmile
########################################
# Translation tasks
...
...
@@ -319,7 +320,8 @@ TASK_REGISTRY = {
"kobest_hellaswag"
:
kobest
.
HellaSwag
,
"kobest_sentineg"
:
kobest
.
SentiNeg
,
"ko_en_translation"
:
ko_translation
.
KoEnTranslation
,
"en_ko_translation"
:
ko_translation
.
EnKoTranslation
"en_ko_translation"
:
ko_translation
.
EnKoTranslation
,
"korunsmile"
:
korunsmile
.
KorUnSmile
}
...
...
lm_eval/tasks/korunsmile.py
0 → 100644
View file @
26f19561
"""
Korean UnSmile Dataset
Github: https://github.com/smilegate-ai/korean_unsmile_dataset
"""
import
numpy
as
np
from
lm_eval.base
import
MultipleChoiceTask
from
lm_eval.metrics
import
macro_f1_score
_CITATION
=
"""
@misc{SmilegateAI2022KoreanUnSmileDataset,
title = {Korean UnSmile dataset: Human-annotated Multi-label Korean Hate Speech Dataset},
author = {Seonghyun Kim},
year = {2022},
howpublished = {https://github.com/smilegate-ai/korean_unsmile_dataset},
}
"""
class
KorUnSmile
(
MultipleChoiceTask
):
VERSION
=
0
DATASET_PATH
=
"smilegate-ai/kor_unsmile"
DATASET_NAME
=
None
def
has_training_docs
(
self
):
return
True
def
has_validation_docs
(
self
):
return
True
def
has_test_docs
(
self
):
return
False
def
training_docs
(
self
):
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
map
(
self
.
_process_doc
,
self
.
dataset
[
"train"
]))
return
self
.
_training_docs
def
validation_docs
(
self
):
return
map
(
self
.
_process_doc
,
self
.
dataset
[
"valid"
])
def
_process_doc
(
self
,
doc
):
out_doc
=
{
"title"
:
doc
[
"문장"
],
"choices"
:
[
"여성/가족"
,
"남성"
,
"성소수자"
,
"인종/국적"
,
"연령"
,
"지역"
,
"종교"
,
"기타 혐오"
,
"악플/욕설"
,
"clean"
],
"gold"
:
np
.
argmax
(
doc
[
"labels"
])
}
return
out_doc
def
doc_to_text
(
self
,
doc
):
return
"{}"
.
format
(
doc
[
"title"
])
def
doc_to_target
(
self
,
doc
):
return
" {}"
.
format
({
0
:
"여성/가족"
,
1
:
"남성"
,
2
:
"성소수자"
,
3
:
"인종/국적"
,
4
:
"연령"
,
5
:
"지역"
,
6
:
"종교"
,
7
:
"기타 혐오"
,
8
:
"악플/욕설"
,
9
:
"clean"
}[
doc
[
"gold"
]])
def
process_results
(
self
,
doc
,
results
):
pred
=
np
.
argmax
(
results
)
gold
=
doc
[
"gold"
]
return
{
"f1"
:
(
gold
,
pred
)
}
def
higher_is_better
(
self
):
return
{
"f1"
:
True
}
def
aggregation
(
self
):
return
{
"f1"
:
macro_f1_score
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment