"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes`. If the desired GPU is being used, this message is safe to ignore."
)
else:
self._model=accelerator.prepare_model(
self.model,evaluation_mode=True
)
assertaccelerator.distributed_typein[
DistributedType.FSDP,
DistributedType.MULTI_GPU,
],"Unsupported distributed type provided. Only DDP and FSDP are supported."
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [x] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
* [ ] Checked for equivalence with v0.3.0 LM Evaluation Harness