@@ -307,7 +307,7 @@ To save evaluation results provide an `--output_path`. We also support logging m
...
@@ -307,7 +307,7 @@ To save evaluation results provide an `--output_path`. We also support logging m
Additionally, one can provide a directory with `--use_cache` to cache the results of prior runs. This allows you to avoid repeated execution of the same (model, task) pairs for re-scoring.
Additionally, one can provide a directory with `--use_cache` to cache the results of prior runs. This allows you to avoid repeated execution of the same (model, task) pairs for re-scoring.
To push results and samples to the Hugging Face Hub, first ensure an access token with write access is set in the `HF_TOKEN` environment variable. Then, use the --hf_hub_log_args flag to specify the organization, repository name, repository visibility, and whether to push results and samples to the Hub. For example:
To push results and samples to the Hugging Face Hub, first ensure an access token with write access is set in the `HF_TOKEN` environment variable. Then, use the `--hf_hub_log_args` flag to specify the organization, repository name, repository visibility, and whether to push results and samples to the Hub - [example output](https://huggingface.co/datasets/KonradSzafer/lm-eval-results-demo/tree/main/microsoft__phi-2). For instance:
```bash
```bash
lm_eval --model hf \
lm_eval --model hf \
...
@@ -443,6 +443,7 @@ Extras dependencies can be installed via `pip install -e ".[NAME]"`
...
@@ -443,6 +443,7 @@ Extras dependencies can be installed via `pip install -e ".[NAME]"`
| sentencepiece | For using the sentencepiece tokenizer |
| sentencepiece | For using the sentencepiece tokenizer |
@@ -50,6 +50,10 @@ This mode supports a number of command-line arguments, the details of which can
...
@@ -50,6 +50,10 @@ This mode supports a number of command-line arguments, the details of which can
* `--wandb_args`: Tracks logging to Weights and Biases for evaluation runs and includes args passed to `wandb.init`, such as `project` and `job_type`. Full list (here.)[https://docs.wandb.ai/ref/python/init]. e.g., ```--wandb_args project=test-project,name=test-run```
* `--wandb_args`: Tracks logging to Weights and Biases for evaluation runs and includes args passed to `wandb.init`, such as `project` and `job_type`. Full list (here.)[https://docs.wandb.ai/ref/python/init]. e.g., ```--wandb_args project=test-project,name=test-run```
* `--hf_hub_log_args`: To push results and samples to the Hugging Face Hub. First ensure an access token with write access is set in the `HF_TOKEN` environment variable. Then, use this flag to specify the organization, repository name, repository visibility, and whether to push results and samples to the Hub. e.g., ```--hf_hub_log_args hub_results_org=EleutherAI,hub_repo_name=lm-eval-results,public_repo=False,push_samples_to_hub=True```
## External Library Usage
## External Library Usage
We also support using the library's external API for use within model training loops or other scripts.
We also support using the library's external API for use within model training loops or other scripts.
Title: `COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances`
Abstract: `https://arxiv.org/abs/2311.01012`
`COPAL-ID is an Indonesian causal commonsense reasoning dataset that captures local nuances. It provides a more natural portrayal of day-to-day causal reasoning within the Indonesian (especially Jakartan) cultural sphere. Professionally written and validatid from scratch by natives, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID.`
Homepage: `https://github.com/haryoa/copal-id`
### Citation
```
@article{wibowo2023copal,
title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances},
author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri},
journal={arXiv preprint arXiv:2311.01012},
year={2023}
}
```
### Groups and Tasks
#### Groups
*`copal_id`
#### Tasks
*`copal_id_standard`: `Standard version of COPAL dataset, use formal language and less local nuances`
*`copal_id_colloquial`: `Colloquial version of COPAL dataset, use informal language and more local nuances`
### Checklist
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
Measuring Mathematical Problem Solving With the MATH Dataset
https://arxiv.org/abs/2103.03874
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations.
NOTE: This task corresponds to the MATH (`hendrycks_math`) implementation at https://github.com/EleutherAI/lm-evaluation-harness/tree/master . For the variant which uses the custom 4-shot prompt in the Minerva paper (https://arxiv.org/abs/2206.14858), and SymPy answer checking as done by Minerva, see `lm_eval/tasks/minerva_math`.
Homepage: https://github.com/hendrycks/math
## Citation
```
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt},
journal={NeurIPS},
year={2021}
}
```
### Groups and Tasks
#### Groups
-`hendrycks_math`: the MATH benchmark from Hendrycks et al. 0- or few-shot.
#### Tasks
-`hendrycks_math_algebra`
-`hendrycks_math_counting_and_prob`
-`hendrycks_math_geometry`
-`hendrycks_math_intermediate_algebra`
-`hendrycks_math_num_theory`
-`hendrycks_math_prealgebra`
-`hendrycks_math_precalc`
### Checklist
The checklist is the following:
For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
* [x] Have you referenced the original paper that introduced the task?
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
* Answer extraction code is taken from the original MATH benchmark paper's repository.
If other tasks on this dataset are already supported:
* [x] Is the "Main" variant of this task clearly denoted?
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [x] Have you noted which, if any, published evaluation setups are matched by this variant?