Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
11fa0bf4
Unverified
Commit
11fa0bf4
authored
May 22, 2022
by
Taekyoon
Committed by
GitHub
May 22, 2022
Browse files
Add korquad v1.0 task (#327)
- Add korquad task
parent
cc88a0cf
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
138 additions
and
2 deletions
+138
-2
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+7
-2
lm_eval/tasks/korquad.py
lm_eval/tasks/korquad.py
+131
-0
No files found.
lm_eval/tasks/__init__.py
View file @
11fa0bf4
...
...
@@ -51,8 +51,12 @@ from . import blimp
from
.
import
asdiv
from
.
import
gsm8k
from
.
import
storycloze
from
.
import
klue
from
.
import
nsmc
from
.
import
klue
from
.
import
korquad
########################################
# Translation tasks
...
...
@@ -300,7 +304,8 @@ TASK_REGISTRY = {
"blimp_wh_vs_that_with_gap"
:
blimp
.
BlimpWhVsThatWithGap
,
"blimp_wh_vs_that_with_gap_long_distance"
:
blimp
.
BlimpWhVsThatWithGapLongDistance
,
"klue_sts"
:
klue
.
STS
,
"nsmc"
:
nsmc
.
NSMC
,
"nsmc"
:
nsmc
.
NSMC
,
"korquad"
:
korquad
.
Korquad
# Requires manual download of data.
# "storycloze_2016": storycloze.StoryCloze2016,
# "storycloze_2018": storycloze.StoryCloze2018,
...
...
lm_eval/tasks/korquad.py
0 → 100644
View file @
11fa0bf4
"""
Korquad (Korean QA Dataset for Machine Reading Comprehension)
https://arxiv.org/abs/1909.07005
Machine Reading Comprehension (MRC) is a task that requires machine to understand natural language and answer questions by reading a document.
It is the core of automatic response technology such as chatbots and automatized customer supporting systems.
We present Korean Question Answering Dataset(KorQuAD), a large-scale Korean dataset for extractive machine reading comprehension task.
It consists of 70,000+ human generated question-answer pairs on Korean Wikipedia articles.
We release KorQuAD1.0 and launch a challenge at this https URL to encourage the development of multilingual natural language processing research.
"""
import
datasets
from
math
import
exp
from
lm_eval.base
import
rf
,
Task
from
functools
import
partial
from
packaging
import
version
_CITATION
=
"""
@article{lim2019korquad1,
title={Korquad1. 0: Korean qa dataset for machine reading comprehension},
author={Lim, Seungyoung and Kim, Myungji and Lee, Jooyoul},
journal={arXiv preprint arXiv:1909.07005},
year={2019}
"""
def
_squad_metric
(
predictions
,
references
):
squad_metric
=
datasets
.
load_metric
(
"squad"
)
return
squad_metric
.
compute
(
predictions
=
predictions
,
references
=
references
)
def
_squad_agg
(
key
,
items
):
predictions
,
references
=
zip
(
*
items
)
return
_squad_metric
(
predictions
=
predictions
,
references
=
references
)[
key
]
class
Korquad
(
Task
):
VERSION
=
1
DATASET_PATH
=
"KETI-AIR/korquad"
DATASET_NAME
=
"v1.0"
# # HF changed squad on us so we have to make sure we aren't running the old one
# assert version.parse(datasets.__version__) >= version.parse("1.11.0"), "datasets v1.11.0 or later required for SQuAD"
def
has_training_docs
(
self
):
return
True
def
has_validation_docs
(
self
):
return
True
def
has_test_docs
(
self
):
return
False
def
training_docs
(
self
):
return
self
.
dataset
[
"train"
]
def
validation_docs
(
self
):
return
self
.
dataset
[
"dev"
]
def
doc_to_text
(
self
,
doc
):
return
'제목: '
+
doc
[
'title'
]
+
'
\n\n
'
+
'본문: '
+
doc
[
'context'
]
+
'
\n\n
'
+
'질문: '
+
doc
[
'question'
]
+
'
\n\n
'
+
'답:'
def
doc_to_target
(
self
,
doc
):
answer_list
=
doc
[
'answers'
][
'text'
]
answer
=
answer_list
[
0
]
return
" "
+
answer
def
construct_requests
(
self
,
doc
,
ctx
):
""" Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation
=
rf
.
greedy_until
(
ctx
,
[
'
\n
'
])
return
continuation
def
process_results
(
self
,
doc
,
results
):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
continuation
=
results
predictions
=
{
'id'
:
doc
[
'id'
],
'prediction_text'
:
continuation
}
references
=
{
'id'
:
doc
[
'id'
],
'answers'
:
doc
[
'answers'
],
}
return
{
'exact_match'
:
(
predictions
,
references
),
# Exact match (the normalized answer exactly match the gold answer)
'f1'
:
(
predictions
,
references
),
# The F-score of predicted tokens versus the gold answer
}
def
aggregation
(
self
):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return
{
'exact_match'
:
partial
(
_squad_agg
,
'exact_match'
),
# Exact match (the normalized answer exactly match the gold answer)
'f1'
:
partial
(
_squad_agg
,
'f1'
),
# The F-score of predicted tokens versus the gold answer
}
def
higher_is_better
(
self
):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return
{
'exact_match'
:
True
,
# Exact match (the normalized answer exactly match the gold answer)
'f1'
:
True
,
# The F-score of predicted tokens versus the gold answer
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment