Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
1050109b
Unverified
Commit
1050109b
authored
Feb 08, 2021
by
Leo Gao
Committed by
GitHub
Feb 08, 2021
Browse files
Merge pull request #136 from jon-tow/openbookqa-evaluation
Implement `OpenBookQA` evaluation
parents
359114fd
aa1d7293
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
25 additions
and
75 deletions
+25
-75
lm_eval/tasks/__init__.py
lm_eval/tasks/__init__.py
+1
-1
lm_eval/tasks/openbookqa.py
lm_eval/tasks/openbookqa.py
+24
-74
No files found.
lm_eval/tasks/__init__.py
View file @
1050109b
...
...
@@ -56,7 +56,7 @@ TASK_REGISTRY = {
"arc_challenge"
:
arc
.
ARCChallenge
,
# "quac": quac.QuAC, # not implemented yet
"hellaswag"
:
hellaswag
.
HellaSwag
,
# not implemented yet
#
"openbookqa": openbookqa.OpenBookQA,
# not implemented yet
"openbookqa"
:
openbookqa
.
OpenBookQA
,
# "sat": sat.SATAnalogies, # not implemented yet
# "squad": squad.SQuAD, # not implemented yet
"race"
:
race
.
RACE
,
...
...
lm_eval/tasks/openbookqa.py
View file @
1050109b
import
numpy
as
np
from
scipy.stats
import
pearsonr
,
spearmanr
from
sklearn.metrics
import
f1_score
,
matthews_corrcoef
from
tqdm
import
auto
as
tqdm_lib
from
.
common
import
HFTask
,
simple_accuracy_metric
,
yesno
from
lm_eval.base
import
MultipleChoiceTask
from
.common
import
HFTask
class
OpenBookQA
(
HFTask
):
class
OpenBookQA
(
HFTask
,
MultipleChoiceTask
):
DATASET_PATH
=
"openbookqa"
DATASET_NAME
=
"main"
...
...
@@ -17,82 +15,34 @@ class OpenBookQA(HFTask):
def
has_test_docs
(
self
):
return
True
def
_convert_standard
(
self
,
doc
):
out_doc
=
{
"id"
:
doc
[
"id"
],
"query"
:
doc
[
"question_stem"
],
"choices"
:
doc
[
"choices"
][
"text"
],
"gold"
:
[
"A"
,
"B"
,
"C"
,
"D"
].
index
(
doc
[
"answerKey"
].
strip
()),
}
return
out_doc
def
_load_docs
(
self
,
docs
):
for
record
in
docs
:
yield
self
.
_convert_standard
(
record
)
def
training_docs
(
self
):
if
self
.
has_training_docs
():
if
self
.
_training_docs
is
None
:
self
.
_training_docs
=
list
(
self
.
data
[
"train"
])
return
self
.
_training_docs
docs
=
super
().
training_docs
()
return
self
.
_load_docs
(
docs
)
def
validation_docs
(
self
):
if
self
.
has_
validation_docs
()
:
return
self
.
data
[
"validation"
]
docs
=
super
().
validation_docs
()
return
self
.
_load_docs
(
docs
)
def
test_docs
(
self
):
if
self
.
has_
test_docs
()
:
return
self
.
data
[
"test"
]
docs
=
super
().
test_docs
()
return
self
.
_load_docs
(
docs
)
def
fewshot_description
(
self
):
# TODO: figure out fewshot description
return
""
def
doc_to_text
(
self
,
doc
):
return
doc
[
'question_stem'
]
+
'
\n
'
def
doc_to_target
(
self
,
doc
):
letter_answer
=
doc
[
'answerKey'
]
if
letter_answer
==
'A'
:
index
=
0
elif
letter_answer
==
'B'
:
index
=
1
elif
letter_answer
==
'C'
:
index
=
2
elif
letter_answer
==
'D'
:
index
=
3
else
:
raise
ValueError
(
"OpenBookQA from HF datasets contained an invalid answer key"
)
return
doc
[
'choices'
][
'text'
][
index
]
+
'.'
def
construct_requests
(
self
,
doc
,
ctx
):
""" Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
# TODO: implement evaluation.
raise
NotImplementedError
(
'Evaluation not implemented'
)
def
process_results
(
self
,
doc
,
results
):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
# TODO: implement evaluation.
raise
NotImplementedError
(
'Evaluation not implemented'
)
def
aggregation
(
self
):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
# TODO: implement evaluation.
raise
NotImplementedError
(
'Evaluation not implemented'
)
def
higher_is_better
(
self
):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
# TODO: implement evaluation.
raise
NotImplementedError
(
'Evaluation not implemented'
)
return
doc
[
"query"
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment