author={Gao, Leo and Tow, Jonathan and Abbasi, Baber and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and Le Noac'h, Alain and Li, Haonan and McDonell, Kyle and Muennighoff, Niklas and Ociepa, Chris and Phang, Jason and Reynolds, Laria and Schoelkopf, Hailey and Skowron, Aviya and Sutawika, Lintang and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy},
title={A framework for few-shot language model evaluation},
@@ -18,7 +18,7 @@ New updates and features include:
Please see our updated documentation pages in `docs/` for more details.
Development will be continuing on the `main` branch, and we encourage you to give us feedback on what features are desired and how to improve the library further, or ask questions, either in issues or PRs on GitHub, or in the [EleutherAI discord](discord.gg/eleutherai)!
Development will be continuing on the `main` branch, and we encourage you to give us feedback on what features are desired and how to improve the library further, or ask questions, either in issues or PRs on GitHub, or in the [EleutherAI discord](https://discord.gg/eleutherai)!
## Overview
...
...
@@ -28,13 +28,13 @@ This project provides a unified framework to test generative language models on
- Over 60 standard academic benchmarks for LLMs, with hundreds of subtasks and variants implemented.
- Support for models loaded via [transformers](https://github.com/huggingface/transformers/)(including quantization via [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)), [GPT-NeoX](https://github.com/EleutherAI/gpt-neox), and [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/), with a flexible tokenization-agnostic interface.
- Support for fast and memory-efficient inference with [vLLM](https://github.com/vllm-project/vllm).
- Support for commercial APIs including [OpenAI](https://openai.com), [goose.ai](https://goose.ai), and [TextSynth](https://textsynth.com/).
- Support for commercial APIs including [OpenAI](https://openai.com), and [TextSynth](https://textsynth.com/).
- Support for evaluation on adapters (e.g. LoRA) supported in [HuggingFace's PEFT library](https://github.com/huggingface/peft).
- Support for local models and benchmarks.
- Evaluation with publicly available prompts ensures reproducibility and comparability between papers.
- Easy support for custom prompts and evaluation metrics.
The Language Model Evaluation Harness is the backend for 🤗 Hugging Face's popular [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), has been used in [hundreds of papers](https://scholar.google.com/scholar?oi=bibs&hl=en&authuser=2&cites=15052937328817631261,4097184744846514103,17476825572045927382,18443729326628441434,12854182577605049984) is used internally by dozens of companies including NVIDIA, Cohere, Nous Research, Booz Allen Hamilton, and Mosaic ML.
The Language Model Evaluation Harness is the backend for 🤗 Hugging Face's popular [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), has been used in [hundreds of papers](https://scholar.google.com/scholar?oi=bibs&hl=en&authuser=2&cites=15052937328817631261,4097184744846514103,1520777361382155671,17476825572045927382,18443729326628441434,14801318227356878622,7890865700763267262,12854182577605049984,15641002901115500560,5104500764547628290), and is used internally by dozens of organizations including NVIDIA, Cohere, BigScience, BigCode, Nous Research, and Mosaic ML.
## Install
...
...
@@ -49,23 +49,28 @@ pip install -e .
We also provide a number of optional dependencies for extended functionality. Extras can be installed via `pip install -e ".[NAME]"`
To evaluate a model hosted on the [HuggingFace Hub](https://huggingface.co/models)(e.g. GPT-J-6B) on `hellaswag` you can use the following command:
To evaluate a model hosted on the [HuggingFace Hub](https://huggingface.co/models)(e.g. GPT-J-6B) on `hellaswag` you can use the following command (this assumes you are using a CUDA-compatible GPU):
```bash
lm_eval --model hf \
...
...
@@ -97,40 +102,52 @@ lm_eval --model hf \
--batch_size auto:4
```
Alternatively, you can use `lm-eval` instead of `lm_eval`.
The full list of supported arguments are provided [here](./docs/interface.md), and on the terminal by calling `lm_eval -h`. Alternatively, you can use `lm-eval` instead of `lm_eval`.
> [!Note]
> Just like you can provide a local path to `transformers.AutoModel`, you can also provide a local path to `lm_eval` via `--model_args pretrained=/path/to/model`
#### Multi-GPU Evaluation with Hugging Face `accelerate`
To parallelize evaluation of HuggingFace models across multiple GPUs, we leverage the [accelerate 🚀](https://github.com/huggingface/accelerate) library as follows:
We support two main ways of using Hugging Face's [accelerate 🚀](https://github.com/huggingface/accelerate) library for multi-GPU evaluation.
To perform *data-parallel evaluation* (where each GPU loads a **separate full copy** of the model), we leverage the `accelerate` launcher as follows:
```
accelerate launch -m lm_eval --model hf \
--tasks lambada_openai,arc_easy \
--batch_size 16
```
(or via `accelerate launch --no-python lm_eval`).
For cases where your model can fit on a single GPU, this allows you to evaluate on K GPUs K times faster than on one.
**WARNING**: This setup does not work with FSDP model sharding, so in `accelerate config` FSDP must be disabled, or the NO_SHARD FSDP option must be used.
The second way of using `accelerate` for multi-GPU evaluation is when your model is *too large to fit on a single GPU.*
In this setting, run the library *outside of the `accelerate` launcher*, but passing `parallelize=True` to `--model_args` as follows:
This will perform *data-parallel evaluation*: that is, placing a **single full copy** of your model onto each available GPU and *splitting batches across GPUs* to evaluate on K GPUs K times faster than on one.
```
lm_eval --model hf \
--tasks lambada_openai,arc_easy \
--model_args parallelize=True \
--batch_size 16
```
If your model is *is too large to be run on a single one of your GPUs* then you can use `accelerate` with Fully Sharded Data Parallel (FSDP) that splits the weights of the model across your data parallel ranks. To enable this, ensure you select `YES` when asked ```Do you want to use FullyShardedDataParallel?``` when running `accelerate config`. To enable memory-efficient loading, select `YES` when asked `Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start?`. This will ensure only the rank 0 process loads the model and then broadcasts the parameters to the other ranks instead of having each rank load all parameters which can lead to large RAM usage spikes around the start of the script that may cause errors.
This means that your model's weights will be split across all available GPUs.
To pass even more advanced keyword arguments to `accelerate`, we allow for the following arguments as well:
For more advanced users or even larger models, we allow for the following arguments when `parallelize=True`as well:
-`device_map_option`: How to split model weights across available GPUs. defaults to "auto".
-`max_memory_per_gpu`: the max GPU memory to use per GPU in loading the model.
-`max_cpu_memory`: the max amount of CPU memory to use when offloading the model weights to RAM.
-`offload_folder`: a folder where model weights will be offloaded to disk if needed.
To use `accelerate` with the `lm-eval` command, use
```
accelerate launch --no_python lm-eval --model ...
```
These two options (`accelerate launch` and `parallelize=True`) are mutually exclusive.
### Tensor + Data Parallel and Optimized Inference with `vLLM`
We also support vLLM for faster inference on [supported model types](https://docs.vllm.ai/en/latest/models/supported_models.html). For single-GPU or multi-GPU — tensor parallel, data parallel, or a combination of both — inference, for example:
We also support vLLM for faster inference on [supported model types](https://docs.vllm.ai/en/latest/models/supported_models.html), especially faster when splitting a model across multiple GPUs. For single-GPU or multi-GPU — tensor parallel, data parallel, or a combination of both — inference, for example:
```bash
lm_eval --model vllm \
...
...
@@ -140,7 +157,7 @@ lm_eval --model vllm \
```
For a full list of supported vLLM configurations, please reference our vLLM integration and the vLLM documentation.
vLLM occasionally differs in output from Huggingface. We treat Huggingface as the reference implementation, and provide a script at [./scripts/model_comparator.py](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/scripts/model_comparator.py) for checking validity of vllm results against HF.
vLLM occasionally differs in output from Huggingface. We treat Huggingface as the reference implementation, and provide a [script](./scripts/model_comparator.py) for checking the validity of vllm results against HF.
### Model APIs and Inference Servers
...
...
@@ -151,24 +168,28 @@ To call a hosted model, use:
```bash
export OPENAI_API_KEY=YOUR_KEY_HERE
lm_eval --model openai-completions \
--model_argsengine=davinci \
--model_argsmodel=davinci \
--tasks lambada_openai,hellaswag
```
Note that for externally hosted models, configs such as `--device` and `--batch_size` should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
We also support using your own local inference server with an implemented version of the OpenAI ChatCompletions endpoint and passing trained HuggingFace artifacts and tokenizers.
Note that for externally hosted models, configs such as `--device` and `--batch_size` should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
| API or Inference Server | Implemented? | `--model <xxx>` name | Models supported: | Request Types: |
| Mamba | :heavy_check_mark: | `mamba_ssm` | [Mamba architecture Language Models via the `mamba_ssm` package](https://huggingface.co/state-spaces) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
| Your local inference server!| :heavy_check_mark:| `local-chat-completions` (using `openai-chat-completions` model type) | Any server address that accepts GET requests using HF models and mirror's OpenAI's ChatCompletions interface | `generate_until` | | ... |
It is on our roadmap to create task variants designed to enable models which do not serve logprobs/loglikelihoods to be compared with generation performance of open-source models.
...
...
@@ -176,6 +197,8 @@ It is on our roadmap to create task variants designed to enable models which do
A number of other libraries contain scripts for calling the eval harness through their library. These include [GPT-NeoX](https://github.com/EleutherAI/gpt-neox/blob/main/eval_tasks/eval_adapter.py), [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples/MoE/readme_evalharness.md), and [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/eval_harness.py).
To create your own custom integration you can follow instructions from [this tutorial](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage).
### Additional Features
If you have a Metal compatible Mac, you can run the eval harness using the MPS back-end by replacing `--device cuda:0` with `--device mps` (requires PyTorch version 2.1 or higher).
...
...
@@ -210,11 +233,11 @@ lm_eval --model hf \
--device cuda:0
```
[GPTQ](https://github.com/PanQiWei/AutoGPTQ) quantized models can be loaded by specifying their file names in `,gptq=NAME` (or `,gptq=True` for default names) in the `model_args` argument:
[GPTQ](https://github.com/PanQiWei/AutoGPTQ) quantized models can be loaded by specifying their file names in `,autogptq=NAME` (or `,autogptq=True` for default names) in the `model_args` argument:
@@ -226,9 +249,50 @@ Additionally, one can provide a directory with `--use_cache` to cache the result
For a full list of supported arguments, check out the [interface](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md) guide in our documentation!
## Visualizing Results
You can use [Zeno](https://zenoml.com) to visualize the results of your eval harness runs.
First, head to [hub.zenoml.com](https://hub.zenoml.com) to create an account and get an API key [on your account page](https://hub.zenoml.com/account).
Add this key as an environment variable:
```bash
export ZENO_API_KEY=[your api key]
```
You'll also need to install the `lm_eval[zeno]` package extra.
To visualize the results, run the eval harness with the `log_samples` and `output_path` flags.
We expect `output_path` to contain multiple folders that represent individual model names.
You can thus run your evaluation on any number of tasks and models and upload all of the results as projects on Zeno.
```bash
lm_eval \
--model hf \
--model_argspretrained=EleutherAI/gpt-j-6B \
--tasks hellaswag \
--device cuda:0 \
--batch_size 8 \
--log_samples\
--output_path output/gpt-j-6B
```
Then, you can upload the resulting data using the `zeno_visualize` script:
```bash
python scripts/zeno_visualize.py \
--data_path output \
--project_name"Eleuther Project"
```
This will use all subfolders in `data_path` as different models and upload all tasks within these model folders to Zeno.
If you run the eval harness on multiple tasks, the `project_name` will be used as a prefix and one project will be created per task.
You can find an example of this workflow in [examples/visualize-zeno.ipynb](examples/visualize-zeno.ipynb).
## How to Contribute or Learn More?
For more information on the library and how everything fits together, check out all of our [documentation pages](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor/docs)! We plan to post a larger roadmap of desired + planned library improvements soon, with more information on how contributors can help.
For more information on the library and how everything fits together, check out all of our [documentation pages](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/docs)! We plan to post a larger roadmap of desired + planned library improvements soon, with more information on how contributors can help.
@@ -4,7 +4,7 @@ Welcome to the docs for the LM Evaluation Harness!
## Table of Contents
* To learn about the public interface of the library, as well as how to evaluate via the commandline or as integrated into an external library, see the [Interface](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/user_guide.md)
* To learn about the public interface of the library, as well as how to evaluate via the commandline or as integrated into an external library, see the [Interface](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/interface.md)
* To learn how to add a new library, API, or model type to the library, as well as a quick explainer on the types of ways to evaluate an LM, see the [Model Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/model_guide.md).
* For a crash course on adding new tasks to the library, see our [New Task Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/new_task_guide.md).
* To learn more about pushing the limits of task configuration that the Eval Harness supports, see the [Task Configuration Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/big-refactor/docs/task_guide.md).
Alternatively, if you have previously downloaded a dataset from huggingface hub (using `save_to_disk()`) and wish to use the local files, you will need to use `data_dir` under `dataset_kwargs` to point to where the directory is.
```
dataset_path: hellaswag
dataset_kwargs:
data_dir: hellaswag_local/
```
You can also set `dataset_path` as a directory path in your local system. This will assume that there is a loading script with the same name as the directory. [See datasets docs](https://huggingface.co/docs/datasets/loading#local-loading-script).
## Writing a Prompt Template
The next thing we need to do is decide what format to use when presenting the data to the LM. This is our **prompt**, where we'll define both an input and output format.
Open the file specified at the `--output_base_path <path>` and ensure it passes
a simple eye test.
## Versioning
One key feature in LM Evaluation Harness is the ability to version tasks--that is, mark them with a specific version number that can be bumped whenever a breaking change is made.
This version info can be provided by adding the following to your new task config file:
```
metadata:
version: 0
```
Now, whenever a change needs to be made to your task in the future, please increase the version number by 1 so that users can differentiate the different task iterations and versions.
If you are incrementing a task's version, please also consider adding a changelog to the task's README.md noting the date, PR number, what version you have updated to, and a one-liner describing the change.
for example,
* \[Dec 25, 2023\] (PR #999) Version 0.0 -> 1.0: Fixed a bug with answer extraction that led to underestimated performance.
## Checking performance + equivalence
It's now time to check models' performance on your task! In the evaluation harness, we intend to support a wide range of evaluation tasks and setups, but prioritize the inclusion of already-proven benchmarks following the precise evaluation setups in the literature where possible.
...
...
@@ -340,4 +379,4 @@ It is recommended to include a filled-out copy of this checklist in the README.m
## Submitting your task
You're all set! Now push your work and make a pull request to the `big-refactor` branch! Thanks for the contribution :). If there are any questions, please leave a message in the `#lm-thunderdome` channel on the EAI discord!
You're all set! Now push your work and make a pull request to the `main` branch! Thanks for the contribution :). If there are any questions, please leave a message in the `#lm-thunderdome` channel on the EAI discord!
Adding a multiple choice metric has a few steps. To get it working you need to:
1. register a metric function
2. register an aggregation function
3. update the `Task` definition to make sure the correct arguments are passed
The default metric and aggregation functions are in `lm_eval/api/metrics.py`, and you can add a function there if it's for general use. The metrics are towards the bottom of the file and look like this:
@register_metric(
metric="mcc",
higher_is_better=True,
output_type="multiple_choice",
aggregation="matthews_corrcoef",
)
def mcc_fn(items): # This is a passthrough function
return items
Note that many of these are passthrough functions, and for multiple choice (at least) this function is never actually called.
Aggregation functions are defined towards the top of the file, here's an example:
This function returns a single numeric value. The input is defined in `Task.process_results` in `lm_eval/api/task.py`. There's a section that looks like this:
result_dict = {
**({"acc": acc} if "acc" in use_metric else {}),
**({"f1": (gold, pred)} if "f1" in use_metric else {}),
**({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
**({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
**({"exact_match": exact_match} if "exact_match" in use_metric else {}),
}
The value here determines the input to the aggregation function, though the name used matches the metric function. These metrics all have simple needs and just need the accuracy or gold and predicted values, but immediately below this there are examples of metrics with more complicated needs you can use as reference.
## Good Reference Tasks
...
...
@@ -258,6 +301,23 @@ task:
-hendrycksTest*
```
It is also possible to list an existing task in your benchmark configuration with some adjustments. For example, a few tasks from mmlu is included `multimedqa`. There, the `task_alias` and `group_alias` (See [here](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/new_task_guide.md#beautifying-table-display) for more details) are modified to suit the benchmark.
```yaml
group:multimedqa
task:
-pubmedqa
-medmcqa
-medqa_4options
-task:mmlu_anatomy
task_alias:"anatomy(mmlu)"
group_alias:null
-task:mmlu_clinical_knowledge
task_alias:"clinical_knowledge(mmlu)"
group_alias:null
...
```
Alternatively, benchmarks can have tasks that are customizable for each task. They can be defined like how a yaml task is usually set.
"Benchmarking your models is the first step towards making sure your model performs well.\n",
"However, looking at the data behind the benchmark, slicing the data into subsets, and comparing models on individual instances can help you even more in evaluating and quantifying the behavior of your AI system.\n",
"\n",
"All of this can be done in [Zeno](https://zenoml.com)!\n",
"Zeno is super easy to use with the eval harness, let's explore how you can easily upload and visualize your eval results.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install this project if you did not already do that. This is all that needs to be installed for you to be able to visualize your data in Zeno!\n",
"!pip install -e ..\n",
"!pip install -e ..[zeno]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run the Eval Harness\n",
"\n",
"To visualize the results, run the eval harness with the `log_samples` and `output_path` flags. We expect `output_path` to contain multiple folders that represent individual model names. You can thus run your evaluation on any number of tasks and models and upload all of the results as projects on Zeno.\n"
"This is so you can be authenticated with Zeno.\n",
"If you don't already have a Zeno account, first create an account on [Zeno Hub](https://hub.zenoml.com).\n",
"After logging in to Zeno Hub, generate your API key by clicking on your profile at the bottom left to navigate to your account page.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%env ZENO_API_KEY=YOUR_API_KEY"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Visualize Eval Results\n",
"\n",
"You can now use the `zeno_visualize` script to upload the results to Zeno.\n",
"\n",
"This will use all subfolders in `data_path` as different models and upload all tasks within these model folders to Zeno. If you run the eval harness on multiple tasks, the `project_name` will be used as a prefix and one project will be created per task.\n"
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximal batch size to try with --batch_size auto",
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu)",
help="Device to use (e.g. cuda, cuda:0, cpu).",
)
parser.add_argument(
"--output_path",
"-o",
default=None,
type=str,
metavar="= [dir/file.jsonl] [DIR]",
metavar="DIR|DIR/file.json",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
"-L",
type=float,
default=None,
metavar="N|0<N<1",
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument("--decontamination_ngrams_path",default=None)# TODO: not used
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks",
help="Whether to run the relevant part of the test suite for the tasks.",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents",
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
"-s",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raiseValueError(
f"Tasks {missing} were not found. Try `lm-eval --tasks list` for list of available tasks."
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'