Commit 04635731 authored by rokosbasilisk's avatar rokosbasilisk
Browse files

remove unrequired files&add pin commit hash

parent bce9f289
python main.py --model gpt2 --model_args pretrained=EleutherAI/gpt-neo-125M --device cuda:0 --tasks math_asdiv
This diff is collapsed.
LICENSE.md
README.md
setup.py
lm_eval/__init__.py
lm_eval/base.py
lm_eval/evaluator.py
lm_eval/metrics.py
lm_eval/utils.py
lm_eval.egg-info/PKG-INFO
lm_eval.egg-info/SOURCES.txt
lm_eval.egg-info/dependency_links.txt
lm_eval.egg-info/requires.txt
lm_eval.egg-info/top_level.txt
lm_eval/models/__init__.py
lm_eval/models/dummy.py
lm_eval/models/gpt2.py
lm_eval/models/gpt3.py
lm_eval/tasks/__init__.py
lm_eval/tasks/anli.py
lm_eval/tasks/arc.py
lm_eval/tasks/arithmetic.py
lm_eval/tasks/blimp.py
lm_eval/tasks/cbt.py
lm_eval/tasks/common.py
lm_eval/tasks/coqa.py
lm_eval/tasks/drop.py
lm_eval/tasks/glue.py
lm_eval/tasks/headqa.py
lm_eval/tasks/hellaswag.py
lm_eval/tasks/hendrycks_ethics.py
lm_eval/tasks/hendrycks_math.py
lm_eval/tasks/hendrycks_test.py
lm_eval/tasks/lambada.py
lm_eval/tasks/lambada_cloze.py
lm_eval/tasks/lambada_multilingual.py
lm_eval/tasks/logiqa.py
lm_eval/tasks/mathqa.py
lm_eval/tasks/mc_taco.py
lm_eval/tasks/mutual.py
lm_eval/tasks/naturalqs.py
lm_eval/tasks/openbookqa.py
lm_eval/tasks/pile.py
lm_eval/tasks/piqa.py
lm_eval/tasks/prost.py
lm_eval/tasks/pubmedqa.py
lm_eval/tasks/qa4mre.py
lm_eval/tasks/quac.py
lm_eval/tasks/race.py
lm_eval/tasks/sat.py
lm_eval/tasks/sciq.py
lm_eval/tasks/squad.py
lm_eval/tasks/storycloze.py
lm_eval/tasks/superglue.py
lm_eval/tasks/translation.py
lm_eval/tasks/triviaqa.py
lm_eval/tasks/truthfulqa.py
lm_eval/tasks/unscramble.py
lm_eval/tasks/webqs.py
lm_eval/tasks/wikitext.py
lm_eval/tasks/winogrande.py
lm_eval/tasks/wsc273.py
scripts/__init__.py
scripts/cost_estimate.py
scripts/fewshot_description_experiment.py
scripts/get_prompts.py
scripts/make_gpt2_test_cases.py
scripts/make_table_tasks.py
scripts/write_out.py
scripts/clean_training_data/__init__.py
scripts/clean_training_data/archiver.py
scripts/clean_training_data/generate_13_grams.py
scripts/clean_training_data/janitor.py
scripts/clean_training_data/process_sorted_buckets.py
scripts/clean_training_data/sort_13_gram_buckets.py
\ No newline at end of file
black
best_download>=0.0.6
datasets==1.15.1
click>=7.1
scikit-learn>=0.24.1
torch>=1.7
transformers>=4.1
sqlitedict==1.6.0
pytablewriter==0.58.0
sacrebleu==1.5.0
rouge-score==0.0.4
bleurt@ https://github.com/google-research/bleurt/archive/b610120347ef22b494b6d69b4316e303f5932516.zip#egg=bleurt
pycountry==20.7.3
numexpr==2.7.2
lm_dataformat==0.0.20
pytest==6.2.3
pybind11==2.6.2
tqdm-multiprocess==0.0.11
zstandard==0.15.2
jsonlines==2.0.0
mock==4.0.3
openai==0.6.4
jieba==0.42.1
nagisa==0.2.7
......@@ -32,9 +32,9 @@ class Asdiv(Task):
if self.DATASET_PATH.exists():
return
Path.mkdir(self.DATASET_PATH)
url = "https://github.com/chaochun/nlu-asdiv-dataset/archive/refs/heads/master.zip"
checksum = "2f71f8003929d605369ad924be4b95c15879fc2bfac0d4d01a81f8aabceaad5c"
zip_path = self.DATASET_PATH / "master.zip"
url = "https://github.com/chaochun/nlu-asdiv-dataset/archive/55790e5270bb91ccfa5053194b25732534696b50.zip"
checksum = "8f1fe4f6d5f170ec1e24ab78c244153c14c568b1bb2b1dad0324e71f37939a2d"
zip_path = self.DATASET_PATH / "55790e5270bb91ccfa5053194b25732534696b50.zip"
download_file(url, str(zip_path), checksum)
with ZipFile(zip_path, "r") as zip:
zip.extractall(self.DATASET_PATH)
......@@ -85,7 +85,7 @@ class Asdiv(Task):
raise NotImplementedError("This dataset has no test docs")
def validation_docs(self):
data_xml_path = self.DATASET_PATH / "nlu-asdiv-dataset-master/dataset/ASDiv.xml"
data_xml_path = self.DATASET_PATH / "nlu-asdiv-dataset-55790e5270bb91ccfa5053194b25732534696b50/dataset/ASDiv.xml"
return self.load_docs(data_xml_path)
def fewshot_context(self, doc, num_fewshot, provide_description, rnd):
......@@ -109,11 +109,10 @@ class Asdiv(Task):
if len(answer)>0: # check if answer is present only in brackets
return answer
else:
return doc['answer']
return " "+doc['answer']
def construct_requests(self, doc, ctx):
ll, is_greedy = rf.loglikelihood(ctx, self.doc_to_target(doc))
return ll, is_greedy
def process_results(self, doc, results):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment