Unverified Commit 008fc2a2 authored by Hailey Schoelkopf's avatar Hailey Schoelkopf Committed by GitHub
Browse files

Merge pull request #617 from matthoffner/master

Add GGML model
parents 382af8c9 05c29914
......@@ -141,6 +141,15 @@ python main.py \
--tasks hellaswag
```
GGUF or GGML quantized models can be loaded by using `llama-cpp-python` server:
```bash
python main.py \
--model gguf \
--model_args base_url=http://localhost:8000 \
--tasks hellaswag
```
We support wildcards in task names, for example you can run all of the machine-translated lambada tasks via `--task lambada_openai_mt_*`.
We currently only support one prompt per task, which we strive to make the "standard" as defined by the benchmark's authors. If you would like to study how varying prompts causes changes in the evaluation score, check out the [BigScience fork](https://github.com/bigscience-workshop/lm-evaluation-harness) of this repo. We are currently working on upstreaming this capability to `main`.
......
......@@ -4,6 +4,7 @@ from . import anthropic_llms
from . import huggingface
from . import textsynth
from . import dummy
from . import gguf
MODEL_REGISTRY = {
"hf": gpt2.HFLM,
......@@ -15,6 +16,7 @@ MODEL_REGISTRY = {
"anthropic": anthropic_llms.AnthropicLM,
"textsynth": textsynth.TextSynthLM,
"dummy": dummy.DummyLM,
"gguf": gguf.GGUFLM
}
......
import requests
import logging
import time
from tqdm import tqdm
from requests.exceptions import RequestException
import transformers
from lm_eval.utils import Reorderer
from lm_eval.base import BaseLM
logger = logging.getLogger(__name__)
def get_result(logprobs, context_length):
is_greedy = True
offsets = logprobs['text_offset']
tokens = logprobs['tokens']
tokens_logprobs = logprobs['token_logprobs']
idx = 0
while offsets[idx] < context_length:
idx += 1
continuation_logprobs = sum(tokens_logprobs[idx:-1])
for i in range(idx, len(tokens)):
token = tokens[i]
top_tokens = logprobs["top_logprobs"][i]
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
if top_token != token:
is_greedy = False
break
return continuation_logprobs, is_greedy
class GGUFLM(BaseLM):
def __init__(self, base_url, max_length=2048):
super().__init__()
self.base_url = base_url
self.logprobs = 10
self.temperature = 0.0
self.max_length = max_length
def gguf_completion(self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs):
for _ in range(retries):
try:
prompt = context
request = {'prompt': prompt, 'logprobs': self.logprobs,
'temperature': self.temperature}
if continuation:
prompt += continuation
request.update({'prompt': prompt, 'max_tokens': 1, 'echo': True})
if stop is not None:
request['stop'] = stop
response = requests.post(f"{self.base_url}/v1/completions", json=request)
response.raise_for_status()
return response.json()
except RequestException as e:
logger.error(f"RequestException: {e}")
time.sleep(delay) # wait before retrying
else:
raise Exception(f"Failed to get a valid response after {retries} retries.")
def loglikelihood(self, requests):
if not requests:
return []
res = []
for context, continuation in tqdm(requests):
response = self.gguf_completion(context=context, continuation=continuation)
if response and "choices" in response and response["choices"]:
choice = response["choices"][0]
logprobs = choice.get("logprobs")
if logprobs and "token_logprobs" in logprobs and logprobs["token_logprobs"]:
logprob, is_greedy = get_result(logprobs, len(context))
res.append((logprob, is_greedy))
else:
logger.warning("Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list.")
else:
logger.error(f"Invalid response for loglikelihood. Response: {response}")
assert False
return res
def greedy_until(self, requests):
if not requests:
return []
res = []
for request in tqdm(requests):
inp = request[0]
request_args = request[1]
until = request_args["until"]
response = self.gguf_completion(context=inp, stop=until)
if response and "choices" in response and response["choices"]:
choice = response["choices"][0]
if "text" in choice:
generated_text = choice["text"].strip()
res.append(generated_text)
else:
logger.error(f"Invalid response for greedy_until. Response: {response}")
res.append(None) # Add default value in case of error
else:
logger.error(f"Invalid response for greedy_until. Response: {response}")
res.append(None) # Add default value in case of error
return res
def loglikelihood_rolling(self, requests):
raise NotImplementedError("loglikelihood_rolling not yet supported for GGUF models")
def _model_call(self, inps):
# Placeholder implementation
raise NotImplementedError()
def _model_generate(self, context, max_length, eos_token_id):
# Placeholder implementation
raise NotImplementedError()
def tok_encode(self, string: str):
raise NotImplementedError()
def tok_decode(self, tokens):
raise NotImplementedError()
@property
def batch_size(self):
# Placeholder implementation
raise NotImplementedError()
@property
def device(self):
# Placeholder implementation
raise NotImplementedError()
@property
def eot_token_id(self):
# Placeholder implementation
raise NotImplementedError()
def max_length(self):
return self.max_length
@property
def max_gen_toks(self):
# Placeholder implementation
raise NotImplementedError()
import unittest
from unittest.mock import patch
import hashlib
import json
import os
import pickle
from lm_eval.models.gguf import GGUFLM
base_url = "https://matthoffner-ggml-llm-api.hf.space"
def gguf_completion_mock(base_url, **kwargs):
# Generate a hash from the parameters
hash_kwargs = {'base_url': base_url, **kwargs}
hash = hashlib.sha256(json.dumps(hash_kwargs, sort_keys=True).encode('utf-8')).hexdigest()
fname = f"./tests/testdata/ggml_test_{hash}.pkl"
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
else:
print("The file does not exist, attempting to write...")
if 'stop' in kwargs:
result = {"choices": [{"text": f"generated text until {kwargs['stop']}", "logprobs": {"token_logprobs": [-1.2345]}, "finish_reason": "length"}]}
else:
result = {"choices": [{"logprobs": {"token_logprobs": [-1.2345]}, "finish_reason": "length"}]}
try:
os.makedirs(os.path.dirname(fname), exist_ok=True)
print('Writing file at', fname)
with open(fname, "wb") as fh:
pickle.dump(result, fh)
print('File written successfully')
except Exception as e:
print('File writing failed:', e)
return result
class GGUFLMTest(unittest.TestCase):
@patch('lm_eval.models.gguf.GGUFLM.gguf_completion', side_effect=gguf_completion_mock)
def test_loglikelihood(self, gguf_completion_mock):
lm = GGUFLM(base_url)
# Test loglikelihood
requests = [("context1", "continuation1"), ("context2", "continuation2")]
res = lm.loglikelihood(requests)
# Assert the loglikelihood response is correct
expected_res = [(logprob, True) for logprob in [-1.2345, -1.2345]]
self.assertEqual(res, expected_res)
@patch('lm_eval.models.gguf.GGUFLM.gguf_completion', side_effect=gguf_completion_mock)
def test_greedy_until(self, gguf_completion_mock):
lm = GGUFLM(base_url)
# Test greedy_until
requests = [("input1", {"until": "stop1"}), ("input2", {"until": "stop2"})]
res = lm.greedy_until(requests)
# Assert the greedy_until response is correct
expected_res = ["generated text until stop1", "generated text until stop2"]
self.assertEqual(res, expected_res)
@patch('lm_eval.models.gguf.GGUFLM.gguf_completion', side_effect=gguf_completion_mock)
def test_loglikelihood_rolling(self, gguf_completion_mock):
lm = GGUFLM(base_url)
# Test loglikelihood_rolling
requests = ["input1", "input2"]
res = lm.loglikelihood_rolling(requests)
# Assert the loglikelihood_rolling response is correct
expected_res = [(-1.2345, True), (-1.2345, True)]
self.assertEqual(res, expected_res)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment