common.py 1.07 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
2
import nlp
import numpy as np
Jason Phang's avatar
Jason Phang committed
3
import random
Jason Phang's avatar
checkin  
Jason Phang committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from ..base import Dataset


class NLP_TASK(Dataset):
    NLP_PATH = None
    NLP_NAME = None

    def _load_nlp_dataset(self):
        return nlp.load_dataset(path=self.NLP_PATH, name=self.NLP_NAME)

    def training_docs(self):
        if self.has_training_docs():
            return self._load_nlp_dataset()["train"]

    def validation_docs(self):
        if self.has_validation_docs():
            return self._load_nlp_dataset()["validation"]

    def test_docs(self):
        if self.has_test_docs():
            return self._load_nlp_dataset()["test"]

Jason Phang's avatar
Jason Phang committed
26
27
28
29
30
31
    def fewshot_examples(self, k):
        training_docs = self.training_docs()
        n = len(training_docs)
        indices = random.sample(range(n), k)
        return [training_docs[i] for i in indices]

Jason Phang's avatar
checkin  
Jason Phang committed
32
33
34
35
36
37
38
39

def simple_accuracy_metric(preds, golds):
    acc = float((np.array(preds) == np.array(golds)).mean())
    return {
        "major": acc,
        "minor": {"acc": acc},
        "higher_is_better": True,
    }
Jason Phang's avatar
Jason Phang committed
40
41
42
43
44
45
46


def yesno(x):
    if x:
        return 'yes'
    else:
        return 'no'