squad.py 3.17 KB
Newer Older
Charles Foster's avatar
Charles Foster committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
from . common import HFTask, simple_accuracy_metric, yesno

class SQuAD(HFTask):
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

17
18
19
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
20
21
22
23
24
25
26
27
28
    def training_docs(self):
        if self.has_training_docs():
            return self.data["train"]

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation"]

    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
29
        # TODO: redo description
Charles Foster's avatar
Charles Foster committed
30
31
        return "Title: The_Title_of_It\n\nBackground: A text passage as background to answer the question with.\n\nQ: Question about the passage.\n\nA: Answer."

32
33
34
35
36
37
38
39
40
41
    def doc_to_text(self, doc):
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
        return answer
Charles Foster's avatar
Charles Foster committed
42

Leo Gao's avatar
Leo Gao committed
43
44
45
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
46

Leo Gao's avatar
Leo Gao committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
Leo Gao's avatar
Leo Gao committed
86
        raise NotImplementedError('Evaluation not implemented')