model.py 9.21 KB
Newer Older
1
import abc
haileyschoelkopf's avatar
haileyschoelkopf committed
2
import os
3

4
5
import torch
from typing import Union, List, Tuple, Optional, Type, TypeVar
haileyschoelkopf's avatar
haileyschoelkopf committed
6
7
8
from sqlitedict import SqliteDict
import json
import hashlib
9

10
from tqdm import tqdm
11

12
from lm_eval import utils
haileyschoelkopf's avatar
haileyschoelkopf committed
13
from lm_eval.logger import eval_logger
14

15
16
T = TypeVar("T", bound="LM")

17
18

class LM(abc.ABC):
Ethan Smith's avatar
Ethan Smith committed
19
    def __init__(self) -> None:
20
21
22
23
24
        """Defines the interface that should be implemented by all LM subclasses.
        LMs are assumed to take text (strings) as input and yield strings as output
        (inputs/outputs should be tokenization-agnostic.)

        """
25
26
27
        # set rank and world size to a single process, by default.
        self._rank = 0
        self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
28
        self.cache_hook = CacheHook(None)
29
30

    @abc.abstractmethod
baberabb's avatar
baberabb committed
31
    def loglikelihood(self, requests) -> List[Tuple[float, bool]]:
32
33
34
35
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other
        LM calls whenever possible.

baberabb's avatar
baberabb committed
36
37
38
        :param requests: list[Instance]
            A list of Instance objects, with property `args` which returns a tuple (context, continuation).
            `context: str`
39
40
                Context string. Implementations of LM must be able to handle an
                empty context string.
baberabb's avatar
baberabb committed
41
            `continuation: str`
42
43
44
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
                For example, context="hello" continuation=" world" is correct.
baberabb's avatar
baberabb committed
45
46

        :return: list[tuple[float, bool]]
47
            A list of pairs (logprob, isgreedy)
baberabb's avatar
baberabb committed
48
49
50
51
            `logprob: float`
                The log probability of `continuation`.
            `isgreedy`:
                Whether `continuation` would be generated by greedy sampling from `context`.
52
53
54
55
        """
        pass

    @abc.abstractmethod
baberabb's avatar
baberabb committed
56
    def loglikelihood_rolling(self, requests) -> List[Tuple[float, bool]]:
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

baberabb's avatar
baberabb committed
84
85
        :param requests: list[Instance]
            A list of Instance objects with property `args` which returns a tuple (context, continuation).
86
87
            string: str
                String for which we are computing per-token loglikelihood
baberabb's avatar
baberabb committed
88
        :return: list[tuple[float, bool]]
89
90
91
92
93
94
95
96
97
98
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

    # TODO: Add an optional max length
    @abc.abstractmethod
baberabb's avatar
baberabb committed
99
    def greedy_until(self, requests) -> List[str]:
100
101
        """Generate greedily until a stopping sequence

baberabb's avatar
baberabb committed
102
103
        :param requests: list[Instance]
            A list of Instance objects with property `args` which returns a tuple (context, until).
104
105
106
107
108
            context: str
                Context string
            until: [str]
                The string sequences to generate until. These string sequences
                may each span across multiple tokens, or may be part of one token.
baberabb's avatar
baberabb committed
109
        :return: list[str]
110
111
112
113
114
115
116
            A list of strings continuation
            continuation: str
                The generated continuation.
        """
        pass

    @classmethod
117
118
119
120
121
122
123
124
125
126
127
128
129
    def create_from_arg_string(
        cls: Type[T], arg_string: str, additional_config: Optional[dict] = None
    ) -> T:
        """
        Creates an instance of the LM class using the given argument string and additional config.

        Parameters:
        - arg_string: A string containing arguments in the format key1=value1,key2=value2.
        - additional_config: Optional dictionary containing additional configuration parameters.

        Returns:
        - Instance of the LM class.
        """
130
131
132
        additional_config = {} if additional_config is None else additional_config
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
133
134
135
136
137
138
        # TODO: delete once float16 MPS is fixed in torch stable
        if (
            args2.get("device") in ("mps", "mps:0")
            or args.get("device") in ("mps", "mps:0")
            and "dev" not in torch.__version__
        ):
baberabb's avatar
baberabb committed
139
            args["dtype"] = "float32"
140
        return cls(**args, **args2)
haileyschoelkopf's avatar
haileyschoelkopf committed
141
142
143
144
145
146

    @property
    def rank(self):
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
147
        return self._rank
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
151
152
153

    @property
    def world_size(self):
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
154
        return self._world_size
haileyschoelkopf's avatar
haileyschoelkopf committed
155

Ethan Smith's avatar
Ethan Smith committed
156
    def set_cache_hook(self, cache_hook) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
157
158
159
160
161
162
163
164
165
166
        self.cache_hook = cache_hook


### SQLite-based caching of LM responses
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()


class CacheHook:
Ethan Smith's avatar
Ethan Smith committed
167
    def __init__(self, cachinglm) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
168
169
170
171
172
173
        if cachinglm is None:
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict

Ethan Smith's avatar
Ethan Smith committed
174
    def add_partial(self, attr, req, res) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
175
176
177
178
179
180
181
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


class CachingLM:
Ethan Smith's avatar
Ethan Smith committed
182
    def __init__(self, lm, cache_db) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
        self.lm = lm
        self.cache_db = cache_db
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
        self.dbdict = SqliteDict(cache_db, autocommit=True)

        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

    def __getattr__(self, attr):
        lm_attr = getattr(self.lm, attr)
        if not callable(lm_attr):
            return lm_attr

        def fn(requests):
            res = []
            remaining_reqs = []
            warned = False
            # figure out which ones are cached and which ones are new
209
210
211
            eval_logger.info(
                f"Loading '{attr}' responses from cache '{self.cache_db}' where possible..."
            )
212
            for req in tqdm(requests):
haileyschoelkopf's avatar
haileyschoelkopf committed
213
214
215
216
217
218
                hsh = hash_args(attr, req.args)
                if attr == "greedy_until" and req.args[1].get("do_sample", False):
                    # when we are doing non-greedy generation, don't use the cache
                    # (else every "randomly sampled" generation would be identical for repeats > 1).
                    if not warned:
                        eval_logger.warning(
219
                            f"Arguments to lm.greedy_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests."
haileyschoelkopf's avatar
haileyschoelkopf committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                        )
                        warned = True
                    res.append(None)
                    remaining_reqs.append(req)
                elif hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)

            # actually run the LM on the requests that do not have cached results
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
                while res[resptr] is not None:
                    resptr += 1

                res[resptr] = r

                # caching
                hsh = hash_args(attr, req.args)
                self.dbdict[hsh] = r
            self.dbdict.commit()

            return res

        return fn

    def get_cache_hook(self):
        return CacheHook(self)