rwkvwrapper.py 5.81 KB
Newer Older
Baber's avatar
Baber committed
1
from typing import List, Optional, Tuple, Union
Baber's avatar
Baber committed
2
3

import torch
Baber's avatar
fix gen  
Baber committed
4
import torch.nn.functional as F
Baber's avatar
Baber committed
5
6
7
8
9
10
11

import lm_eval.models.utils
from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM


@register_model("rwkv")
Baber's avatar
Baber committed
12
class RWKVWRAPPER(HFLM):
Baber's avatar
Baber committed
13
14
    def __init__(
        self,
Baber's avatar
fixes  
Baber committed
15
        pretrained="RWKV-x070-Pile-1.47B-20241210-ctx4096",
Baber's avatar
Baber committed
16
17
18
19
20
21
22
        # To use the HF compatible variant
        is_hf: bool = False,
        **kwargs,
    ) -> None:
        if "backend" in kwargs:
            assert kwargs["backend"] == "causal"
        self.is_hf = is_hf or (True if pretrained.endswith("hf") else False)
Baber's avatar
nit  
Baber committed
23
        assert kwargs["tokenizer"] is not None, "`tokenizer` is required"
Baber's avatar
nit  
Baber committed
24
        assert kwargs["batch_size"] in [1, "1"], "`batch_size` must be 1"
Baber's avatar
nit  
Baber committed
25
26
        tokenizer = kwargs.pop("tokenizer")
        pretrained = pretrained
Baber's avatar
Baber committed
27
28
29
30
        super().__init__(
            pretrained=pretrained,
            # set appropriate defaults for tokenizer, max length, etc
            backend=kwargs.pop("backend", "causal"),
Baber's avatar
nit  
Baber committed
31
            tokenizer=tokenizer,
Baber's avatar
Baber committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
            max_length=kwargs.pop("max_length", 4096),
            **kwargs,
        )

    def _get_config(
        self,
        pretrained: str,
        **kwargs,
    ) -> None:
        if self.is_hf:
            super()._get_config(pretrained, **kwargs)
        else:
            self._config = {}

    def _create_model(
        self,
        pretrained: str,
        dtype: Optional[Union[str, torch.dtype]] = "fp16",
        **kwargs,
    ) -> None:
        if self.is_hf:
            super()._create_model(pretrained, dtype=dtype, **kwargs)
        else:
            try:
                from rwkv.model import RWKV
            except ModuleNotFoundError as exception:
                raise type(exception)(
Baber's avatar
nit  
Baber committed
59
                    "install rwkv package (pip install rwkv)",
Baber's avatar
Baber committed
60
61
62
63
64
65
66
67
                )

            import os

            os.environ["RWKV_JIT_ON"] = "1"
            os.environ["RWKV_CUDA_ON"] = "1"
            os.environ["RWKV_V7_ON"] = "1"

Baber's avatar
Baber committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            import os

            from huggingface_hub import hf_hub_download

            def download_file(repo_id, filename, local_dir="./downloads"):
                os.makedirs(local_dir, exist_ok=True)

                path = hf_hub_download(
                    repo_id=repo_id,
                    filename=filename,
                    local_dir=local_dir,
                    local_dir_use_symlinks=False,
                )
                return path

            for pretrained in [
Baber's avatar
fixes  
Baber committed
84
85
86
                "RWKV-x070-Pile-168M-20241120-ctx4096",
                "RWKV-x070-Pile-421M-20241127-ctx4096",
                "RWKV-x070-Pile-1.47B-20241210-ctx4096",
Baber's avatar
Baber committed
87
88
89
            ]:
                download_file(
                    repo_id="BlinkDL/rwkv-7-pile",
Baber's avatar
fixes  
Baber committed
90
                    filename=pretrained + ".pth",
Baber's avatar
Baber committed
91
92
93
                    local_dir="rwkv_model",
                )

Baber's avatar
nit  
Baber committed
94
95
            self._model = RWKV(model=f"rwkv_model/{pretrained}", strategy="cuda fp16")
            self._model.tie_weights = lambda: None
Baber's avatar
Baber committed
96

Baber's avatar
fix gen  
Baber committed
97
98
99
100
101
102
103
104
    def _model_generate(
        self,
        context: "torch.tensor",
        max_length: int,
        stop: list[str],
        **generation_kwargs,
    ) -> "torch.tensor":
        context_len = context.shape[1]
Baber's avatar
Baber committed
105
106
107
108
109
110
111
112
113
114
        remove_arg = (
            ["attention_mask"] if self.is_hf else ["do_sample", "attention_mask"]
        )
        for key in remove_arg:
            if key in generation_kwargs:
                generation_kwargs.pop(key)

        all_outputs = []
        if not self.is_hf:
            CHUNK_SIZE = 4096
Baber's avatar
fixes  
Baber committed
115
            context = context.squeeze().tolist()
Baber's avatar
Baber committed
116
117
118
119
120
121
            prefill_ids, next_token = context[:-1], context[-1]
            state = None
            for i in range(0, len(prefill_ids), CHUNK_SIZE):
                prefill_token = prefill_ids[i : i + CHUNK_SIZE]
                _, state = self.model(prefill_token, state)

Baber's avatar
Baber committed
122
123
            # hack: self.gen_len is set in tok_batch_encode
            gen_length = self.gen_len
Baber's avatar
Baber committed
124
125
126
127
128
            for i in range(gen_length):
                logits, state = self.model([next_token], state)
                next_token = torch.argmax(logits, dim=-1)
                all_outputs.append(next_token)

Baber's avatar
fix gen  
Baber committed
129
130
131
132
            # return context + gen (context gets trimmed downstream)
            return F.pad(
                torch.stack(all_outputs).to("cpu"), (context_len, 0)
            ).unsqueeze(0)
Baber's avatar
Baber committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        else:
            stopping_criteria = lm_eval.models.utils.stop_sequences_criteria(
                self.tokenizer,
                stop,
                context.shape[1],
                context.shape[0],
            )

            generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
            do_sample = generation_kwargs.get("do_sample", None)

            # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
            if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
                generation_kwargs["do_sample"] = do_sample = False
            if do_sample is False and generation_kwargs.get("temperature") == 0.0:
                generation_kwargs.pop("temperature")

            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
Baber's avatar
Baber committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    def tok_batch_encode(
        self,
        strings: List[str],
        padding_side: str = "left",
        left_truncate_len: int = None,
        truncation: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        self.gen_len = self.max_length - left_truncate_len
        encoding = self.tokenizer(
            strings,
            truncation=truncation,
            return_tensors="pt",
        )
        return encoding["input_ids"], encoding["attention_mask"]