utils.py 5.51 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
# noqa
import itertools
import re
Baber's avatar
Baber committed
4
from functools import cache
Baber's avatar
Baber committed
5
6
7
8
9
from typing import Literal

import datasets
from transformers import AutoTokenizer

Baber's avatar
Baber committed
10
from lm_eval.tasks.ruler.essays import get_all_essays
Baber's avatar
Baber committed
11
12
13
from lm_eval.tasks.ruler.prepare import generate_samples


Baber's avatar
Baber committed
14
@cache
Baber's avatar
Baber committed
15
16
def get_tokenizer(pretrained):
    return AutoTokenizer.from_pretrained(pretrained, trust_remote_code=True)
Baber's avatar
Baber committed
17
18
19


# TOKENIZER = AutoTokenizer.from_pretrained(os.environ.get("TOKENIZER"))
Baber's avatar
Baber committed
20
TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text? The special magic {type_needle_v} for {query} mentioned in the provided text are"""
Baber's avatar
Baber committed
21
22

SEQ_LENGTHS = (
Baber's avatar
Baber committed
23
24
25
    # 131072,
    # 65536,
    # 32768,
Baber's avatar
Baber committed
26
27
    16384,
    8192,
Baber's avatar
Baber committed
28
29
30
31
32
33
34
35
36
    4096,
)

NUM_SAMPLES = 500
REMOVE_NEWLINE_TAB = ""
STOP_WORDS = ""
RANDOM_SEED = 42


Baber's avatar
Baber committed
37
@cache
Baber's avatar
Baber committed
38
39
40
def get_haystack(type_haystack: Literal["essay", "repeat", "needle"]):
    NEEDLE = "One of the special magic {type_needle_v} for {key} is: {value}."
    if type_haystack == "essay":
Baber's avatar
Baber committed
41
        essay = get_all_essays()["text"]
Baber's avatar
Baber committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        # essay = json.load(open(essay))["text"]
        haystack = re.sub(r"\s+", " ", essay).split(" ")
    elif type_haystack == "repeat":
        haystack = "The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."
    elif type_haystack == "needle":
        haystack = NEEDLE
    else:
        raise NotImplementedError(f"{type_haystack} is not implemented.")
    return haystack


def flatten(df):
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


# ruff: noqa
Baber's avatar
Baber committed
62
niah_single_1 = lambda x: flatten(
Baber's avatar
Baber committed
63
64
65
66
67
68
69
    generate_samples(
        get_haystack(type_haystack="repeat"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="repeat",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
70
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
71
72
73
74
    )
    for seq in SEQ_LENGTHS
)
# ruff: noqa
Baber's avatar
Baber committed
75
niah_single_2 = lambda x: flatten(
Baber's avatar
Baber committed
76
77
78
79
80
81
82
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
83
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
84
85
86
87
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
88
niah_single_3 = lambda x: flatten(
Baber's avatar
Baber committed
89
90
91
92
93
94
95
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="uuids",
Baber's avatar
Baber committed
96
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
97
98
99
100
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
101
niah_multikey_1 = lambda x: flatten(
Baber's avatar
Baber committed
102
103
104
105
106
107
108
109
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_k=4,
Baber's avatar
Baber committed
110
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
111
112
113
114
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
115
niah_multikey_2 = lambda x: flatten(
Baber's avatar
Baber committed
116
117
118
119
120
121
122
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="words",
        type_needle_v="numbers",
Baber's avatar
Baber committed
123
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
124
125
126
127
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
128
niah_multikey_3 = lambda x: flatten(
Baber's avatar
Baber committed
129
130
131
132
133
134
135
    generate_samples(
        get_haystack(type_haystack="needle"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="needle",
        type_needle_k="uuids",
        type_needle_v="uuids",
Baber's avatar
Baber committed
136
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
137
138
139
140
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
141
niah_multivalue = lambda x: flatten(
Baber's avatar
Baber committed
142
143
144
145
146
147
148
149
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_v=4,
Baber's avatar
Baber committed
150
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
151
152
153
154
    )
    for seq in SEQ_LENGTHS
)
# noqa
Baber's avatar
Baber committed
155
niah_multiquery = lambda x: flatten(
Baber's avatar
Baber committed
156
157
158
159
160
161
162
163
    generate_samples(
        get_haystack(type_haystack="essay"),
        max_seq_length=seq,
        template=TEMPLATE,
        type_haystack="essay",
        type_needle_k="words",
        type_needle_v="numbers",
        num_needle_q=4,
Baber's avatar
Baber committed
164
        TOKENIZER=get_tokenizer(x),
Baber's avatar
Baber committed
165
166
167
168
169
    )
    for seq in SEQ_LENGTHS
)


Baber's avatar
Baber committed
170
def postprocess_pred(predict_str: str) -> str:
Baber's avatar
Baber committed
171
172
173
174
175
176
177
178
179
    predict_str = predict_str.strip()

    # Remove all non-printable characters
    np_pattern = re.compile(r"[\x00-\x1f]")
    predict_str = np_pattern.sub("\n", predict_str).strip()

    return predict_str


Baber's avatar
Baber committed
180
181
182
183
184
185
186
187
188
189
def string_match_all(preds: list[str], refs: list[list[str]]) -> float:
    score = sum(
        [
            sum([1.0 if r.lower() in pred.lower() else 0.0 for r in ref]) / len(ref)
            for pred, ref in zip(preds, refs)
        ]
    ) / len(preds)
    return score


Baber's avatar
Baber committed
190
191
def process_results(doc: dict, results: list[str]) -> dict[str, float]:
    # hacky: set all other lengths to -1
Baber's avatar
Baber committed
192
193
    metrics = {str(length): -1.0 for length in SEQ_LENGTHS}
    input_len = doc["max_length"]
Baber's avatar
Baber committed
194
195
196
    pred = postprocess_pred(results[0])
    score = string_match_all([pred], [doc["outputs"]])
    metrics[str(input_len)] = score
Baber's avatar
Baber committed
197
198
199
    return metrics


Baber's avatar
Baber committed
200
def aggregate_metrics(metrics: list[float]) -> float:
Baber's avatar
Baber committed
201
202
203
204
205
    res = [x for x in metrics if x != -1]
    if not res:
        # we don't have any samples with this length
        return 0.0
    return sum(res) / len(res)