huggingface.py 57.3 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
Nathan Habib's avatar
Nathan Habib committed
6
import jinja2
7

8
import torch
9
import torch.nn.functional as F
10
import transformers
Jeevan's avatar
Jeevan committed
11
12
13
14
15
16
from accelerate import (
    Accelerator,
    DistributedType,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
17
from accelerate.utils import get_max_memory
18
from huggingface_hub import HfApi
19
20
21
22
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
23
24
25
26
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
27
28

from lm_eval import utils
baberabb's avatar
baberabb committed
29
from lm_eval.api.instance import Instance
30
from lm_eval.api.model import TemplateLM
31
from lm_eval.api.registry import register_model
32
33
34
35
36
37
38
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
39

40

41
eval_logger = utils.eval_logger
42

Nathan Habib's avatar
cleanup  
Nathan Habib committed
43

Nathan Habib's avatar
cleanup  
Nathan Habib committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
    gpus: Optional[int] = None,
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu for device_idx in range(gpus)
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args

lintangsutawika's avatar
lintangsutawika committed
68

69
@register_model("hf-auto", "hf", "huggingface")
70
class HFLM(TemplateLM):
71
72
73
74
75
76
77
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

78
    AUTO_MODEL_CLASS = None
79
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
80

81
82
    def __init__(
        self,
83
        pretrained: Union[str, transformers.PreTrainedModel],
Baber Abbasi's avatar
Baber Abbasi committed
84
85
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
86
87
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
88
89
90
91
92
93
94
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
95
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
96
        logits_cache: bool = True,
97
98
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
99
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
100
101
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
102
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
103
        use_fast_tokenizer: Optional[bool] = True,
104
        add_bos_token: Optional[bool] = False,
105
        prefix_token_id: Optional[int] = None,
106
        # arguments used for splitting a model across GPUs naively.
107
108
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
109
        device_map_option: Optional[str] = "auto",
110
111
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
112
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
113
        # PEFT, delta weights and quantization options
114
        peft: Optional[str] = None,
115
        delta: Optional[str] = None,
116
117
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
118
    ) -> None:
119
120
        super().__init__()

121
122
123
124
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
125
            )
126
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
127
128
129
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
130
            gpus = 0
131

Nathan Habib's avatar
cleanup  
Nathan Habib committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
            else:
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )

147
        else:
148
149
150
151
152
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
153
154
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
Nathan Habib's avatar
cleanup  
Nathan Habib committed
155
156
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
157

158
159
160
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

161
162
163
164
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
165
                    + [f"cuda:{i}" for i in range(gpus)]
166
                    + ["mps", "mps:0"]
167
                    + [f"npu:{i}" for i in range(gpus)]
168
                )
169
                if device and device in device_list:
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
186
            else:
187
188
189
190
191
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
cleanup  
Nathan Habib committed
192
                self._device = torch.device(device)
193

194
195
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
196

197
            self._get_config(
198
199
                pretrained,
                revision=revision,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
200
                trust_remote_code=trust_remote_code,
201
202
            )

203
204
205
206
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
207

208
209
210
211
212
213
214
215
216
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

217
218
219
220
221
222
223
224
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
225
                gpus=gpus,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
226
                device_map_option=device_map_option,
227
228
229
230
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
231
                delta=delta,
232
233
                autogptq=autogptq,
                **kwargs,
234
235
            )

236
        # access self._model through self.model property outside this method
237
238
239
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
240

Nathan Habib's avatar
cleanup  
Nathan Habib committed
241
242
243
244
245
246
247
248
249
250
251
252
253
        if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
            # TODO: can remove this whole snippet except in the mps case, perhaps?
            if not (parallelize or autogptq or hasattr(self, "accelerator")):
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                    )

lintangsutawika's avatar
lintangsutawika committed
254
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
255
        self.logits_cache = logits_cache
256
        self.vocab_size = self.tokenizer.vocab_size
257
258
259
260
261
262
263
264
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
265
            if getattr(self.config, "model_type", None) == "qwen":
266
267
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
268
269
270
271
272
273
274
275
276
277
            elif (
                self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
                or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
            ):
                # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
                # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
                # ---
                # Note that the world tokenizer class name, might change in the future for the final huggingface merge
                # https://github.com/huggingface/transformers/pull/26963
                assert self.tokenizer.pad_token_id == 0
278
279
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
280

281
282
        # TODO: override this for Gemma
        self.add_bos_token = add_bos_token
283
284
        if getattr(self.config, "model_type", None) == "gemma":
            self.add_bos_token = True
285
            eval_logger.info(
286
                f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
287
288
            )

289
        self._max_length = max_length
290
291
292
293
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
294
295
296
297
298
299
300
301
302
303
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
304

305
306
307
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
cleanup  
Nathan Habib committed
308
309
310
311
312
313
314
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
315
316
317
318
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
319
                else:
320
321
322
323
324
325
326
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
327
328
329
330
331
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
332
                            DistributedType.MULTI_NPU,
333
334
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
335
336
337
338
339
340
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
341
                    self._device = torch.device(f"{accelerator.device}")
342
                    self.accelerator = accelerator
343

344
345
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
346

347
348
349
350
351
352
353
354
355
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
356

357
        self.custom_prefix_token_id = prefix_token_id
358
359
360
361
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
362

363
364
365
366
367
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

368
369
370
371
372
373
374
375
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

376
377
378
379
380
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

381
382
383
384
385
386
387
388
389
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

390
391
    @property
    def max_length(self):
392
393
394
395
396
397
398
399
400
401
402
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
403

404
    @property
Ethan Smith's avatar
Ethan Smith committed
405
    def max_gen_toks(self) -> int:
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
424
425
426
427
428
429
430
431
432
433
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

    @property
    def chat_template(self) -> str:
        if self.tokenizer.chat_template is not None:
            return self.tokenizer.chat_template
        return self.tokenizer.default_chat_template

434
435
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
436
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
Nathan Habib's avatar
cleanup  
Nathan Habib committed
492
493
494
495
496
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )
497
498
499
500
501
502
503
504
505
506
507

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
508
        gpus: Optional[int] = None,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
509
        device_map_option: Optional[str] = "auto",
510
511
512
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
513
        # PEFT, delta weights and quantization options
514
        peft: Optional[str] = None,
515
        delta: Optional[str] = None,
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
cleanup  
Nathan Habib committed
533
534
535
536
537
538
539
540
541
        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
                    device_map_option,  # TODO: phase out device_map_option?
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
                    gpus,
                )
542
            )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
543
544
545
546
547
548
549
550
551
        elif "device_map" not in model_kwargs:
            # set a device_map to initialize model on the right GPU.
            # this is needed because it seems that the default behavior
            # for quantized models now seems to be device_map="auto"
            # which breaks data-parallel mode.
            if hasattr(self, "accelerator"):
                model_kwargs.update({"device_map": {"": f"{self.accelerator.device}"}})
            else:
                model_kwargs.update({"device_map": {"": str(self.device)}})
552

553
554
555
556
557
558
559
560
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
561
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
562
563
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
564
565
566
567
568
569
570
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

590
591
592
593
594
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

595
596
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
597
598
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
599
600
601
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
                self._model.resize_token_embeddings(len(self.tokenizer))
602
603
604
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
605
606
607
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Nathan Habib's avatar
Nathan Habib committed
683
684
    def _detect_batch_size(self, requests=None, pos: int = 0) -> int:
        if len(requests[0]) == 3: # logprob evals
Benjamin Fattori's avatar
Benjamin Fattori committed
685
686
687
688
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
689
690
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Nathan Habib's avatar
cleanup  
Nathan Habib committed
691
            security_margin_factor = 4 # batch sizes for log prob evals sometimes generate OOMs
Nathan Habib's avatar
Nathan Habib committed
692
693
694
695
696
697
698
699
700
        elif len(requests[0]) == 2: # generative evals
            # using rolling window with maximum context
            longest_context = max([len(self.tok_encode(request[0])) + request[1].get("max_gen_toks", self.max_length) for request in requests[pos:]])
            if longest_context > self.max_length:
                eval_logger.warning(
                    f"Longest context length of {longest_context} exceeds max_length of {self.max_length}. Truncating to max_length."
                )
                longest_context = self.max_length
            max_length = longest_context
701
702
            max_context_enc = max_length
            max_cont_enc = max_length
Nathan Habib's avatar
cleanup  
Nathan Habib committed
703
            security_margin_factor = 4
Nathan Habib's avatar
Nathan Habib committed
704

lintangsutawika's avatar
lintangsutawika committed
705

Benjamin Fattori's avatar
Benjamin Fattori committed
706
707
708
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
Nathan Habib's avatar
Nathan Habib committed
709
            security_margin = int(0.05 * security_margin_factor * batch_size)
710
711
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
712
                batched_conts = torch.ones(
Nathan Habib's avatar
Nathan Habib committed
713
                    (batch_size + security_margin, length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
714
                ).long()
Nathan Habib's avatar
Nathan Habib committed
715
                test_batch = torch.ones((batch_size + security_margin, length), device=self.device).long()
716
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
717
718
719
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
720
721
            else:
                call_kwargs = {}
Nathan Habib's avatar
Nathan Habib committed
722
723
                test_batch = torch.rand(
                    (batch_size + security_margin, max_length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
724
                ).long()
Nathan Habib's avatar
Nathan Habib committed
725
726
727
728

            for _ in range(5*security_margin_factor):
                logits = self._model_call(inps=test_batch, **call_kwargs).float()
                scores = F.log_softmax(logits, dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
729

Benjamin Fattori's avatar
Benjamin Fattori committed
730
731
            return batch_size

732
733
734
735
736
737
738
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
739

740
741
742
743
744
745
746
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
747
            clear_torch_cache()
748
749
            return batch_size

750
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
751
752
        return batch_size

baberabb's avatar
baberabb committed
753
754
755
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
756
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
757
758
759
760
761
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
762
763
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
764
765
766
767
768
769
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
770

Lintang Sutawika's avatar
Lintang Sutawika committed
771
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
772

773
774
775
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
776

777
778
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
779
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
780
781
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
782
        padding_side: str = "left",
783
784
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
785
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
786
787
788
789
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
790
        add_special_tokens = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
791
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
792
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
793
794
795

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
796
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
797
798
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
799
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
800
801
802
803
804
805
806
807
808
809
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
810
811
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
812
813
814

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
815
        :param inps: torch.Tensor
816
817
818
819
820
821
822
823
824
825
826
827
828
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
829
830
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
831
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
832
833
834
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
835
836
837
838
839
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
840
        # temperature = 0.0 if not set
841
842
843
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
844
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
845
        do_sample = generation_kwargs.get("do_sample", None)
846
847
848
849
850

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
851
852
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
853
854
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
855
            self.tokenizer, stop, context.shape[1], context.shape[0]
856
        )
857
        return self.model.generate(
858
            input_ids=context,
859
860
            max_length=max_length,
            stopping_criteria=stopping_criteria,
861
            pad_token_id=self.tokenizer.pad_token_id,
862
863
864
            use_cache=True,
            **generation_kwargs,
        )
865

Baber Abbasi's avatar
Baber Abbasi committed
866
867
868
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
869
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
870
871
872
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
873
874
875
876
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
877
878
879
880
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
881
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
882
883
            logits = logits[:contlen]

884
885
        return logits

886
887
888
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
889
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
890
891
892
893
894
895
896
897
898

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

899
900
901
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
902
903
904
905
906
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
907
                        prefix_token=self.prefix_token_id,
908
909
910
911
912
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
913
914

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
930
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
931
932
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
933
934
935
936
937
938
939
940
941
942
943
944
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
945

946
947
948
949
950
951
952
953
954
955
956
957
958
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
959
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
960
961
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
962

Nathan Habib's avatar
Nathan Habib committed
963
964
965
966
    def _reset_batch_scheduler(self):
        """When we change group in generative evaluations, we reset the batch size"""
        self.batch_sizes = {}

Ethan Smith's avatar
Ethan Smith committed
967
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
968
969
970
971
972
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
973
974
975
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
976
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
977
            """Defines the key for the sorted method"""
978
979
980
981
982
983
984
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
985
            toks = req[1] + req[2]
986
987
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
988
989
990
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
991
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
            and self.logits_cache
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1005
1006
1007

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1008
1009
1010
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1011
1012
1013
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1014
1015
1016
1017
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1018
1019
1020
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1021
            else None
1022
1023
        )

Nathan Habib's avatar
cleanup  
Nathan Habib committed
1024
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1025
1026
1027
1028
1029
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1030
        for chunk in chunks:
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1050
                # how this all works (illustrated on a causal decoder-only setup):
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1062
1063
                        device=self.device,
                    )
1064
1065
1066
1067
1068
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1069
                        device=self.device,
1070
                    )
1071
                    (inplen,) = inp.shape
1072
1073
1074
1075

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1076
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1077
                        (continuation_enc)[-self.max_length :],
1078
1079
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1080
                        dtype=torch.long,
1081
1082
                        device=self.device,
                    )
1083
1084
                    (contlen,) = cont.shape

1085
1086
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1087
1088
1089
1090
1091
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1092

haileyschoelkopf's avatar
haileyschoelkopf committed
1093
1094
1095
1096
1097
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1098
1099
1100
1101

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1102

1103
1104
1105
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
1106
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1107
1108
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1109
1110
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
1111
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1112
1113
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1114
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1115
1116
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1117
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1118
1119
1120
1121
1122
1123
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1124
1125

            multi_logits = F.log_softmax(
Nathan Habib's avatar
Nathan Habib committed
1126
                self._model_call(batched_inps, **call_kwargs), dim=-1, dtype=torch.float16
1127
            )  # [batch, padding_length (inp or cont), vocab]
1128

Baber Abbasi's avatar
Baber Abbasi committed
1129
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1130
1131
1132
1133
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1134
                # take only logits in the continuation
1135
                # (discard context toks if decoder-only ; discard right-padding)
1136
1137
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1138
                ctx_len = (
1139
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1140
1141
1142
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1143
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1144
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1145
1146
1147
1148

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

                    self.cache_hook.add_partial("loglikelihood", request_str, answer)
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1178
1179

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1180

1181
1182
        return re_ord.get_original(res)

1183
1184
1185
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1186
        res = []
1187

Baber Abbasi's avatar
Baber Abbasi committed
1188
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1189
            """Defines the key for the sorted method"""
1190
1191
1192
1193
1194
1195
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1196
1197
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1198

1199
1200
        pbar = tqdm(
            total=len(requests),
1201
            disable=(disable_tqdm or (self.rank != 0)),
1202
1203
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1204
1205
1206
1207
1208
1209
1210
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else 0
        )
        batch_fn = (
            self._batch_scheduler
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1211
            if self.batch_size == "auto"
Baber Abbasi's avatar
Baber Abbasi committed
1212
1213
            else None
        )
1214

Baber Abbasi's avatar
Baber Abbasi committed
1215
1216
1217
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1218
1219
1220
1221
1222
1223
1224
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Nathan Habib's avatar
Nathan Habib committed
1225
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn, reset_batch_fn=self._reset_batch_scheduler)
Baber Abbasi's avatar
Baber Abbasi committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1238
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1239
1240
1241
1242
1243
1244
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1245
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1246
                )
1247
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1248
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1249
            if not until:
1250
1251
1252
                until = [eos]
            else:
                until.append(eos)
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1253

Baber Abbasi's avatar
Baber Abbasi committed
1254
1255
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1256
                if max_gen_toks > self.max_length: # some model have low max length limit
Nathan Habib's avatar
Nathan Habib committed
1257
                    max_gen_toks = self.max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1258
1259
1260
1261
1262
1263
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1264
1265
                # if the max new tokens is too large, halve it until it fits as we cannot change
                # the max model length
Baber Abbasi's avatar
Baber Abbasi committed
1266
                max_ctx_len = self.max_length - max_gen_toks
Nathan Habib's avatar
Nathan Habib committed
1267
1268
1269
                while max_ctx_len <= 0:
                    max_gen_toks = max_gen_toks // 2
                    max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1282

Baber Abbasi's avatar
Baber Abbasi committed
1283
1284
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1285

Baber Abbasi's avatar
Baber Abbasi committed
1286
1287
1288
1289
1290
1291
1292
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1293

Baber Abbasi's avatar
Baber Abbasi committed
1294
1295
1296
1297
1298
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1299

Baber Abbasi's avatar
Baber Abbasi committed
1300
                s = self.tok_decode(cont_toks)
1301

Baber Abbasi's avatar
Baber Abbasi committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1315

1316
        pbar.close()
1317

Baber Abbasi's avatar
Baber Abbasi committed
1318
        return res
1319

KonradSzafer's avatar
KonradSzafer committed
1320
1321
1322
1323
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
Nathan Habib's avatar
Nathan Habib committed
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
            

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info