main.py 6 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
lintangsutawika's avatar
lintangsutawika committed
2
import re
Jason Phang's avatar
Jason Phang committed
3
import json
4
import fnmatch
lintangsutawika's avatar
lintangsutawika committed
5
import jsonlines
lintangsutawika's avatar
lintangsutawika committed
6
import argparse
FarzanehNakhaee's avatar
FarzanehNakhaee committed
7
import logging
8
from pathlib import Path
Leo Gao's avatar
Leo Gao committed
9

10
from lm_eval import evaluator, utils
11
from lm_eval.api.registry import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
12
from lm_eval.logger import eval_logger
Jason Phang's avatar
lib  
Jason Phang committed
13

14
os.environ["TOKENIZERS_PARALLELISM"] = "false"
15

Fabrizio Milo's avatar
Fabrizio Milo committed
16

Jason Phang's avatar
Jason Phang committed
17
18
def parse_args():
    parser = argparse.ArgumentParser()
19
20
21
22
23
24
    parser.add_argument("--model", required=True, help="Name of model e.g. `hf`")
    parser.add_argument(
        "--model_args",
        default="",
        help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
    )
lintangsutawika's avatar
lintangsutawika committed
25
26
27
    parser.add_argument(
        "--tasks", default=None, choices=utils.MultiChoice(sorted(ALL_TASKS))
    )
28
29
30
31
32
33
    parser.add_argument(
        "--num_fewshot",
        type=int,
        default=0,
        help="Number of examples in few-shot context",
    )
Benjamin Fattori's avatar
Benjamin Fattori committed
34
    parser.add_argument("--batch_size", type=str, default=1) 
lintangsutawika's avatar
lintangsutawika committed
35
36
37
38
39
40
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        help="Maximal batch size to try with --batch_size auto",
    )
41
42
43
44
45
46
47
48
49
50
51
    parser.add_argument(
        "--device",
        type=str,
        default=None,
        help="Device to use (e.g. cuda, cuda:0, cpu)",
    )
    parser.add_argument(
        "--output_path",
        default=None,
        type=str,
        metavar="= [dir/file.jsonl] [DIR]",
52
        help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
53
    )
lintangsutawika's avatar
lintangsutawika committed
54
55
56
57
58
59
60
    parser.add_argument(
        "--limit",
        type=float,
        default=None,
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    parser.add_argument(
        "--use_cache",
        type=str,
        default=None,
        help="A path to a sqlite db file for caching model responses. `None` if not caching.",
    )
    parser.add_argument("--decontamination_ngrams_path", default=None)  # TODO: not used
    parser.add_argument(
        "--check_integrity",
        action="store_true",
        help="Whether to run the relevant part of the test suite for the tasks",
    )
    parser.add_argument(
        "--write_out",
        action="store_true",
        default=False,
        help="Prints the prompt for the first few documents",
    )
    parser.add_argument(
        "--log_samples",
        action="store_true",
        default=False,
        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
    )
Jason Phang's avatar
Jason Phang committed
85
86
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
87

88
def main():
Jason Phang's avatar
Jason Phang committed
89
    args = parse_args()
Fabrizio Milo's avatar
Fabrizio Milo committed
90

Leo Gao's avatar
Leo Gao committed
91
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
95
        )
Leo Gao's avatar
Leo Gao committed
96

97
    if args.tasks is None:
98
        task_names = ALL_TASKS
Jason Phang's avatar
Jason Phang committed
99
    else:
100
101
        if os.path.isdir(args.tasks):
            import glob
102
103

            task_names = []
104
105
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
106
                config = utils.load_yaml_config(yaml_file)
107
108
                task_names.append(config)
        else:
109
            tasks_list = args.tasks.split(",")
110
            task_names = utils.pattern_match(tasks_list, ALL_TASKS)
111
112
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
113
                    config = utils.load_yaml_config(task)
114
                    task_names.append(config)
lintangsutawika's avatar
lintangsutawika committed
115

116
117
    if args.output_path:
        path = Path(args.output_path)
Lintang Sutawika's avatar
Lintang Sutawika committed
118
        # check if file or 'dir/results.json' exists
baberabb's avatar
baberabb committed
119
        if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
120
121
122
123
124
125
126
127
128
129
130
131
            eval_logger.warning(
                f"File already exists at {path}. Results will be overwritten."
            )
            assert not path.is_file(), "File already exists"
        # if path json then get parent dir
        elif path.suffix in (".json", ".jsonl"):
            output_path_file = path
            path.parent.mkdir(parents=True, exist_ok=True)
            path = path.parent
        else:
            path.mkdir(parents=True, exist_ok=True)
            output_path_file = path.joinpath("results.json")
132
133
    elif args.log_samples and not args.output_path:
        assert args.output_path, "Specify --output_path"
134

lintangsutawika's avatar
lintangsutawika committed
135
    eval_logger.info(f"Selected Tasks: {task_names}")
136

137
138
139
140
141
142
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
143
        max_batch_size=args.max_batch_size,
144
        device=args.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
145
        use_cache=args.use_cache,
146
147
148
        limit=args.limit,
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
149
        write_out=args.write_out,
150
        log_samples=args.log_samples,
151
    )
152

153
    if results is not None:
154
155
        if args.log_samples:
            samples = results.pop("samples")
156
        dumped = json.dumps(results, indent=2, default=lambda o: str(o))
157
158
        print(dumped)

159
160
        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

161
        if args.output_path:
162
            output_path_file.open("w").write(dumped)
163

164
165
166
167
            if args.log_samples:
                for task_name, config in results["configs"].items():
                    output_name = "{}_{}".format(
                        re.sub("/", "__", args.model_args), task_name
lintangsutawika's avatar
lintangsutawika committed
168
                    )
169
                    filename = path.joinpath(f"{output_name}.jsonl")
170
171
172

                    with jsonlines.open(filename, "w") as f:
                        f.write_all(samples[task_name])
lintangsutawika's avatar
lintangsutawika committed
173

174
        print(
175
176
            f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
177
178
        )
        print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
179

180

Jason Phang's avatar
Jason Phang committed
181
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
182
    main()