quac.py 4.14 KB
Newer Older
Charles Foster's avatar
Charles Foster committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import json
import random
import os
from lm_eval.base import Dataset
from ..utils import sh


class QuAC(Dataset):    
    def __init__(self):
        super().__init__()

    def download(self):
        if not os.path.exists('data/quac'):
            sh("""
                mkdir -p data/quac 
                wget https://s3.amazonaws.com/my89public/quac/train_v0.2.json -O data/quac/train_v0.2.json
                wget https://s3.amazonaws.com/my89public/quac/val_v0.2.json -O data/quac/val_v0.2.json
                """)

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def training_docs(self):
        myjson = json.load(open('data/quac/train_v0.2.json'))['data']
        return self.load_doc(myjson)

    def validation_docs(self):
        myjson = json.load(open('data/quac/val_v0.2.json'))['data']    
        return self.load_doc(myjson)

    def test_docs(self):
        raise NotImplementedError("QuAC has no test docs.")
    
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
41
        # TODO: figure out fewshot description
Charles Foster's avatar
Charles Foster committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        desc = "TITLE: Title of the context passage - subtitle of the passage\nPARAGRAPH: Passage describing the relevant information for answering questions.\n\nQ: Text of a question.\n\nA: Answer to the question, based on the passage. If it cannot be answered based on the passage, write CANNOTANSWER"
        return desc

    def load_doc(self, myjson):
        docs = []
        for item in myjson:
            title = item['title'] + ' - ' + item['section_title']
            paragraph = item['paragraphs'][0]['context'].replace("CANNOTANSWER", "")
            qas = item['paragraphs'][0]['qas']
            qa_pairs = [(qa['question'], qa['answers'][0]['text']) for qa in qas]
            for (question, answer) in qa_pairs:
                doc = { 'title': title, 'paragraph': paragraph, 'question': question, 'answer': answer }
                docs.append(doc)  
        return docs
    
57
58
59
60
61
    def doc_to_text(self, doc):
        return 'TITLE: ' + doc['title'] + '\n' + 'PARAGRAPH: ' + doc['paragraph'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

    def doc_to_target(self, doc):
        return doc['answer']
Charles Foster's avatar
Charles Foster committed
62

Leo Gao's avatar
Leo Gao committed
63
64
65
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
66

Leo Gao's avatar
Leo Gao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')