drop.py 3.94 KB
Newer Older
Anish Thite's avatar
Anish Thite committed
1
2
3
4
5
import numpy as np
import json
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
6
from . common import HFTask, simple_accuracy_metric, yesno
Anish Thite's avatar
Anish Thite committed
7
8
9
10
11
12
from pathlib import Path
from ..base import Dataset

class DROP(Dataset):
    DATAFOLDER = Path(__file__).parent / "../../data/drop"
    
13
14
15
    def __init__(self):
        self.download()

Anish Thite's avatar
Anish Thite committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    def has_training_docs(self):
        """Whether the task has a training set"""
        return True
    
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return True

    def has_test_docs(self):
        """Whether the task has a test set"""
        return False

    def training_docs(self):
        docs = json.load(open(self.DATAFOLDER / 'drop_dataset_train.json'))
        return [docs[k] for k in docs.keys()]


    def validation_docs(self):
        docs = json.load(open(self.DATAFOLDER / 'drop_dataset_dev.json'))
        return [docs[k] for k in docs.keys()]
    
    def test_docs(self):
        pass
    
    def doc_to_text(self, doc, include_target=True):
41
        doctext = "Passage: {}\n".format(doc["passage"])
Anish Thite's avatar
Anish Thite committed
42
43
        qa_texts = []
        for pair in doc["qa_pairs"]:
44
            text = ''.join(['Question: ', pair['question'],'\nAnswer: '])
Anish Thite's avatar
Anish Thite committed
45
46
47
48
49
50
51
52
53
54
55
56
57
            if include_target:
                def get_answer(ans_dict):
                    if ans_dict['number'] != '':
                        return ans_dict['number']
                    if ans_dict['spans'] != []:
                        if len(ans_dict['spans']) > 0:
                            return ', '.join(ans_dict['spans'])
                        return ans_dict['spans'][0]
                    return ' '.join([ans_dict['date']['day'], 
                                     ans_dict['date']['month'], 
                                     ans_dict['date']['year']]).strip() 
                text = ''.join([text, get_answer(pair['answer'])])
            qa_texts.append(text)
58
        return ''.join([doctext, '\n'.join(qa_texts)])
Anish Thite's avatar
Anish Thite committed
59
60

    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
61
62
        # TODO: figure out description
        return ""
Anish Thite's avatar
Anish Thite committed
63

Leo Gao's avatar
Leo Gao committed
64
65
66
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
67

Leo Gao's avatar
Leo Gao committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')