"research/object_detection/legacy/eval.py" did not exist on "a3c7d7e83c6f6a10c0592eeb33779aecf5937bb9"
task.py 23.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import abc
from dataclasses import dataclass

import re
import evaluate
import random
import itertools

import datasets
import numpy as np

12
13
from typing import List, Union

haileyschoelkopf's avatar
haileyschoelkopf committed
14
from lm_eval.api.instance import Instance
haileyschoelkopf's avatar
haileyschoelkopf committed
15
from lm_eval.api.metrics import get_metric, get_aggregation, mean, weighted_perplexity, bits_per_byte
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from lm_eval import utils

from lm_eval.filters import build_filter_ensemble
from lm_eval.api import samplers


@dataclass
class TaskConfig(dict):

    task_name: str = None
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
    fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    
33
    template_aliases: str = "" 
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    doc_to_text: str = ""
    doc_to_target: str = ""
36
37
38
39
40
41
42
43
44
45
46
47
48

    # aggregation: dict = None # TODO: remove, I think these 2 are obsolete w/ current metric_list impl.
    # higher_is_better: dict = None
    num_fewshot: int = 0
    batch_size: int = 1
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
    filters: str = None #TODO: need to make this typehint `list`?
    normalization: str = None # TODO: add length-normalization of various types, mutual info
    stop_sequences: list = None # TODO: allow passing of stop sequences to greedy gen.

49
50
51
52
53
54
55
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
        self.doc_to_text = self.template_aliases + self.doc_to_text
        self.doc_to_target = self.template_aliases + self.doc_to_target

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
113
        self._config = TaskConfig(**config) if config else TaskConfig()
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

        if not hasattr(self, "_filters"):
            self._filters = []
            for name, components in self._config.get("filters", [["none", ["take_first"]]]):
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

        self.sampler = samplers.Sampler(self.training_docs(), self, rnd=random.Random()) # TODO: pass the correct docs in here

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

    def build_all_requests(self, limit=None):
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
        for doc_id, doc in enumerate(itertools.islice(docs, 0, limit) if limit else docs):
            # sample fewshot context
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )

            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
            inst = self.construct_requests(doc=doc, ctx=fewshot_ctx, metadata=(self._config["task_name"], doc_id, 2))

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)
            

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
            The number of times each instance in a dataset is inferred on. Defaults to 1, 
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:

            # labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

        for f in self._filters:
            f.apply(self._instances)


class ConfigurableTask(Task):

    VERSION = "2.0"
    OUTPUT_TYPE = "greedy_until"

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):

        self._config = TaskConfig(**config)
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
392
393
            self._metric_kwargs = {}
            for metric_config in self._config.metric_list:
394

lintangsutawika's avatar
lintangsutawika committed
395
396
397
398
                metric_name = metric_config['name']
                aggregation = metric_config['aggregation']
                higher_is_better = metric_config['higher_is_better']
                kwargs = {key: metric_config[key] for key in metric_config if key not in ['name', 'aggregation', 'higher_is_better']}
399

lintangsutawika's avatar
lintangsutawika committed
400
401
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
                self._higher_is_better[metric_name] = higher_is_better
haileyschoelkopf's avatar
haileyschoelkopf committed
402

lintangsutawika's avatar
lintangsutawika committed
403
404
405
406
407
408
409
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
                else:
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
410

lintangsutawika's avatar
lintangsutawika committed
411
412
413
414
415
                    except Exception as ex:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

        
        self._filters = []
        for name, components in self._config.get("filters", [["none", ["take_first"]]]):
            filter_pipeline = build_filter_ensemble(name, components)
            self._filters.append(filter_pipeline)

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
        return utils.apply_template(self._config.doc_to_text, doc)

    def doc_to_target(self, doc):
        return utils.apply_template(self._config.doc_to_target, doc)

    def construct_requests(self, doc, ctx, **kwargs):

lintangsutawika's avatar
lintangsutawika committed
476
477
478
479
480
481
482
483
484
485
486
487
488
        if self.output_type == "loglikelihood":
            arguments=(ctx, self.doc_to_target(doc))
        elif self.output_type == "loglikelihood_rolling":
            arguments=(self.doc_to_target(doc),)
        elif self.output_type == "greedy_until":
            arguments=(ctx, "\n\n")

        return Instance(
            request_type=self.output_type,
            doc=doc,
            arguments=arguments,
            **kwargs
            )
489
490
491
492
493
494
495
496
497
498

    def process_results(self, doc, results):

        if self._config.gold_alias is not None:
            gold = doc[self._config.gold_alias]
        else:
            gold = self.doc_to_target(doc)

        result_dict = {}
        for key, result in zip(self._metric_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
499
            _dict = self._metric_list[key](
500
501
502
503
504
505
506
507
508
509
510
511
512
513
                references=[gold],
                predictions=[result],
            )

            result_dict[key] = _dict[key]

        return result_dict

    def aggregation(self):

        return self._aggregation_list

    def higher_is_better(self):
        
haileyschoelkopf's avatar
haileyschoelkopf committed
514
        return self._higher_is_better
515
516
517
518
519
520
521
522
523
524
525


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
        
haileyschoelkopf's avatar
haileyschoelkopf committed
526
527
        return [Instance(
                request_type="loglikelihood",
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
                doc=doc, 
                arguments=(ctx, " {}".format(choice)),
                id_=i,
                **kwargs,
            )
            for i, choice in enumerate(doc["choices"])]
        #lls = [
        #    rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
        # ]

        # return lls

    def process_results(self, doc, results):
        results = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere? 
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


class PerplexityTask(Task, abc.ABC):

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

    def fewshot_context(
        self, doc, num_fewshot, rnd=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

haileyschoelkopf's avatar
haileyschoelkopf committed
608
        return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=(self.doc_to_target(doc),), id_=0, **kwargs)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        # req = rf.loglikelihood_rolling(self.doc_to_target(doc))
        # return req

    def process_results(self, doc, results):
        (loglikelihood,) = results
        words = self.count_words(doc)
        bytes_ = self.count_bytes(doc)
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679


# TODO: confirm we want this to go in this file

TASK_REGISTRY = {}
ALL_TASKS = []

def register_task(name):

    def decorate(cls):
        assert (
            issubclass(cls, Task)
        ), f"Task '{name}' ({cls.__name__}) must extend Task class"

        assert (
            name not in TASK_REGISTRY
        ), f"Task named '{name}' conflicts with existing task!"

        TASK_REGISTRY[name] = cls
        ALL_TASKS = sorted(list(TASK_REGISTRY)) # TODO: this doesn't seem to import right.
        return cls
    
    return decorate


##### Task registry utils and setup.
# ALL_TASKS = sorted(list(TASK_REGISTRY))


def get_task(task_name):
    try:
        return TASK_REGISTRY[task_name]
    except KeyError:
        print("Available tasks:")
        pprint(TASK_REGISTRY)
        raise KeyError(f"Missing task {task_name}")


def get_task_name_from_object(task_object):
    for name, class_ in TASK_REGISTRY.items():
        if class_ is task_object:
            return name

haileyschoelkopf's avatar
haileyschoelkopf committed
680
    # TODO: scrap this
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    # this gives a mechanism for non-registered tasks to have a custom name anyways when reporting
    return (
        task_object.EVAL_HARNESS_NAME
        if hasattr(task_object, "EVAL_HARNESS_NAME")
        else type(task_object).__name__
    )


def get_task_name_from_config(task_config):
    return "configurable_{dataset_path}_{dataset_name}".format(**task_config)


def get_task_dict(task_name_list: List[Union[str, dict, Task]], num_fewshot=None): # TODO: pass num_fewshot and other cmdline overrides in a better way
    task_name_dict = {
        task_name: get_task(task_name)(config={"num_fewshot": num_fewshot if num_fewshot else 0, "task_name": task_name})
        for task_name in task_name_list
        if isinstance(task_name, str)
    }
    task_name_from_config_dict = {
        get_task_name_from_config(task_config): ConfigurableTask(
            config=task_config
        )
        for task_config in task_name_list
        if isinstance(task_config, dict)
    }
    task_name_from_object_dict = {
        get_task_name_from_object(task_object): task_object
        for task_object in task_name_list
        if isinstance(task_object, Task)
    }
    assert set(task_name_dict.keys()).isdisjoint(set(task_name_from_object_dict.keys()))
    return {
        **task_name_dict,
        **task_name_from_config_dict,
        **task_name_from_object_dict,
    }