t5.py 5.68 KB
Newer Older
Tian Yun's avatar
Tian Yun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
from lm_eval.base import LM
from lm_eval import utils
from tqdm import tqdm
import numpy as np
import math

class T5LM(LM):
    MAX_GEN_TOKS = 256
    MAX_INP_LENGTH = 512
    VOCAB_SIZE = 32128
    EOT_TOKEN_ID = 1

    def __init__(self, device='cuda', parallelize=False, pretrained='t5', batch_size=1):
        super().__init__()
        if device:
            self.device = torch.device(device)
        else:
            self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
        print(pretrained)
        self.t5 = transformers.AutoModelForSeq2SeqLM.from_pretrained(pretrained)
        self.t5.eval()

        if parallelize == "True":
            print(parallelize)
            self.t5.parallelize()
            self.device = torch.device('cuda:0')
        else:
            self.t5.to(self.device)

        self.tokenizer = transformers.T5TokenizerFast.from_pretrained(pretrained)
        self.max_length = self.MAX_INP_LENGTH

        self.batch_size = int(batch_size)

    @classmethod
    def create_from_arg_string(cls, arg_string, additional_config={}):
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)

    def loglikelihood(self, requests):
        res = []
        for chunk in tqdm(utils.chunks(requests, self.batch_size), total=math.ceil(len(requests)/self.batch_size)):

            inputs, targets = zip(*chunk)

            inputs_tok = self.tokenizer(
                list(inputs),
                max_length=self.max_length,
                padding=True,
                # truncation=True,
                add_special_tokens=False,
                return_tensors="pt"
                ).to(self.device)

            for key in inputs_tok:
                inputs_tok[key] = inputs_tok[key][:, -(self.max_length - 1) :]

            targets_tok = self.tokenizer(
                list(targets),
                max_length=self.MAX_GEN_TOKS,
                padding=True,
                # truncation=True,
                add_special_tokens=False,
                return_tensors="pt"
                ).to(self.device)

            for key in targets_tok:
                targets_tok[key] = targets_tok[key][:, -(self.max_length - 1) :]

            with torch.no_grad():
                outputs = self.t5(
                    **inputs_tok,
                    labels=targets_tok["input_ids"]
                    )

            log_softmaxes = F.log_softmax(outputs.logits, dim=-1)
            
            output_iterator = zip(
                chunk,
                log_softmaxes,
                targets_tok["input_ids"],
                targets_tok["attention_mask"],
            )
            for cache_key, log_softmax, target_tok, target_mask in output_iterator:
                length = target_mask.sum()
                log_softmax = log_softmax[:length]
                target_tok = target_tok[:length]
                greedy_tokens = log_softmax.argmax(dim=-1)
                max_equal = (greedy_tokens == target_tok).all()
                target_logits = torch.gather(
                    log_softmax, 1, target_tok.unsqueeze(-1)
                ).squeeze(-1)
                answer = (float(target_logits.sum()), bool(max_equal))
            
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

        return res
    
    def loglikelihood_rolling(self, requests):
        raise NotImplementedError

    def _get_stopping_criteria(self, stopping_criteria_ids):
        class MultitokenEOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_seq_id: torch.LongTensor, tokenizer):
                self.eos_seq = tokenizer.decode(eos_seq_id)
                self.eos_seq_id = eos_seq_id
                self.eos_seq_len = len(eos_seq_id) + 1
                self.tokenizer = tokenizer

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                last_token_id = input_ids[0, -self.eos_seq_len:]
                last_tokens = self.tokenizer.decode(last_token_id)
                is_stopped = self.eos_seq in last_tokens
                return is_stopped
        
        class EOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_token_id: torch.LongTensor):
                self.eos_token_id = eos_token_id

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids[0,-1] == self.eos_token_id
         
        return transformers.StoppingCriteriaList([
            MultitokenEOSCriteria(stopping_criteria_ids, self.tokenizer),
            EOSCriteria(self.tokenizer.eos_token)
        ])

    def greedy_until(self, requests):
        
        res = []

        for context, until in tqdm(requests):
            if isinstance(until, str): until = [until]

            context_enc = self.tokenizer(context, return_tensors="pt").to(self.device).input_ids

            stopping_criteria_ids = self.tokenizer.encode(until[0])
            stopping_criteria = self._get_stopping_criteria(stopping_criteria_ids)

            cont = self.t5.generate(
                context_enc,
                max_length=self.MAX_GEN_TOKS,
                stopping_criteria=stopping_criteria,
                do_sample=False
            )

            s = self.tokenizer.decode(cont[0].tolist())
            
            self.cache_hook.add_partial("greedy_until", (context, until), s)
            
            res.append(s)
        
        return res