gpt2.py 5.16 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
2
import transformers
import torch
3
from lm_eval.base import BaseLM
Jason Phang's avatar
gpt3  
Jason Phang committed
4
5


6
class HFLM(BaseLM):
cjlovering's avatar
cjlovering committed
7
8
9
10
11
12
13
14
15
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
16
17
18
19
20
21
22
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

        if device:
23
            self._device = torch.device(device)
24
        else:
cjlovering's avatar
cjlovering committed
25
26
27
28
29
            self._device = (
                torch.device("cuda")
                if torch.cuda.is_available()
                else torch.device("cpu")
            )
30
31

        # TODO: update this to be less of a hack once subfolder is fixed in HF
32
        self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained(
cjlovering's avatar
cjlovering committed
33
34
            pretrained,
            revision=revision + ("/" + subfolder if subfolder is not None else ""),
35
        ).to(self.device)
36
37
        self.gpt2.eval()

38
39
        # pretrained tokenizer for neo is broken for now so just hard-coding this to gpt2
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
cjlovering's avatar
cjlovering committed
40
41
42
43
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
            subfolder=subfolder,
        )
44

cjlovering's avatar
cjlovering committed
45
46
47
48
49
50
51
52
53
        assert isinstance(
            self.tokenizer,
            (
                transformers.GPT2Tokenizer,
                transformers.GPT2TokenizerFast,
                transformers.T5Tokenizer,
                transformers.T5TokenizerFast,
            ),
        ), "this tokenizer has not been checked for compatibility yet!"
54
55
56

        self.vocab_size = self.tokenizer.vocab_size

cjlovering's avatar
cjlovering committed
57
58
59
60
61
62
63
64
65
        if isinstance(
            self.tokenizer, (transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast)
        ):
            assert self.tokenizer.encode("hello\n\nhello") == [
                31373,
                198,
                198,
                31373,
            ], self.tokenizer.encode("hello\n\nhello")
66
67

        # multithreading and batching
68
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
69
70

        # TODO: fix multi-gpu
71
        # gpus = torch.cuda.device_count()
72
73
        # if gpus > 1:
        #     self.gpt2 = nn.DataParallel(self.gpt2)
74

Tian Yun's avatar
Tian Yun committed
75
76
77
78
    @property
    def eot_token(self):
        return self.tokenizer.eos_token

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        try:
            return self.gpt2.config.n_ctx
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
            return self.gpt2.config.max_position_embeddings

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        # TODO: fix multi-gpu
        return self.batch_size_per_gpu  # * gpus

    @property
    def device(self):
        # TODO: fix multi-gpu
        return self._device

106
107
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
cjlovering's avatar
cjlovering committed
108

109
110
111
112
113
114
115
116
117
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
118
        logits returned from the model
119
120
121
        """
        with torch.no_grad():
            return self.gpt2(inps)[0][:, :, :50257]
cjlovering's avatar
cjlovering committed
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def _get_stopping_criteria(self, stopping_criteria_ids):
        class MultitokenEOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_seq_id: torch.LongTensor, tokenizer):
                self.eos_seq = tokenizer.decode(eos_seq_id)
                self.eos_seq_id = eos_seq_id
                self.eos_seq_len = len(eos_seq_id) + 1
                self.tokenizer = tokenizer

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                last_token_id = input_ids[0, -self.eos_seq_len:]
                last_tokens = self.tokenizer.decode(last_token_id)
                is_stopped = self.eos_seq in last_tokens
                return is_stopped
        
        class EOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_token_id: torch.LongTensor):
                self.eos_token_id = eos_token_id

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids[0,-1] == self.eos_token_id
         
        return transformers.StoppingCriteriaList([
            MultitokenEOSCriteria(stopping_criteria_ids, self.tokenizer),
Tian Yun's avatar
Tian Yun committed
146
            EOSCriteria(self.tokenizer.eos_token)
147
148
149
150
        ])

    def _model_generate(self, context, max_length, stopping_criteria_ids):
        stopping_criteria = self._get_stopping_criteria(stopping_criteria_ids)
151
        return self.gpt2.generate(
152
153
154
155
            context, 
            max_length=max_length, 
            stopping_criteria=stopping_criteria,
            do_sample=False,
156
        )
157
        
158
159


160
161
# for backwards compatibility
GPT2LM = HFLM