base.py 7.36 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import abc
import random
thefazzer's avatar
thefazzer committed
3
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
4
import sklearn
Jason Phang's avatar
gpt3  
Jason Phang committed
5

Jason Phang's avatar
Jason Phang committed
6

Leo Gao's avatar
Leo Gao committed
7
8
class LM(abc.ABC):
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
9
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
10
11
12
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
13

Leo Gao's avatar
Leo Gao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
        :param requests: list
            A list of pairs (context, continuation)
            context: str
                Context string
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `contination`
            isgreedy:
                Whether `contination` would be generated by greedy sampling from `context`
        """
        pass

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
32
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
33
34
35
36
37
38
39
40
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
            until: str
                The string sequence to generate until. This string sequence may 
Leo Gao's avatar
Leo Gao committed
41
                span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
42
43
44
45
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
46
        """
Leo Gao's avatar
Leo Gao committed
47
48
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
49
50
51
52
53
54
55
56
57
58
59
    @classmethod
    def create_from_arg_string(cls, arg_string):
        """Constructor method, in case models need additional arguments
        e.g. OpenAI API engine, paths for loading, other params

        :param arg_string: str
            Left up to individual model class to handle

        """
        return cls()

Leo Gao's avatar
Leo Gao committed
60
61

class Dataset(abc.ABC):
Leo Gao's avatar
Leo Gao committed
62
63
    def __init__(self):
        self.download()
Leo Gao's avatar
Leo Gao committed
64
        self._traindocs = None
sdtblck's avatar
sdtblck committed
65
66
67
68
69

    def download(self):
        """Downloads the task dataset if necessary"""
        pass

70
71
    @abc.abstractmethod
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
72
        """Whether the task has a training set"""
73
74
75
76
        pass
    
    @abc.abstractmethod
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
77
78
79
80
81
82
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
83
84
        pass

Leo Gao's avatar
Leo Gao committed
85
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
86
87
88
89
90
        """

        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
91
        return []
Leo Gao's avatar
Leo Gao committed
92
93
    
    def validation_docs(self):
Leo Gao's avatar
Leo Gao committed
94
        return []
Leo Gao's avatar
Leo Gao committed
95
96
    
    def test_docs(self):
Leo Gao's avatar
Leo Gao committed
97
        return []
Leo Gao's avatar
Leo Gao committed
98
99
    
    def fewshot_examples(self, k):
Leo Gao's avatar
Leo Gao committed
100
101
102
103
        if self._traindocs is None:
            self._traindocs = list(self.training_docs())

        return random.sample(self._traindocs, k)
Leo Gao's avatar
Leo Gao committed
104
105

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
106
107
108
109
110
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
111
        pass
Leo Gao's avatar
Leo Gao committed
112
113

    @abc.abstractmethod
114
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
115
116
117
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

118
119
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
120
        :param ctx: str
121
122
123
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
Leo Gao's avatar
Leo Gao committed
124
        """
Leo Gao's avatar
Leo Gao committed
125
        pass
Leo Gao's avatar
Leo Gao committed
126
127
    
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
128
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
129
        """Take a single document and the LM results and evaluates, returning a 
130
131
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
132
133
134
135
136

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
137
        """
Leo Gao's avatar
Leo Gao committed
138
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
158
    def fewshot_description(self):
Jason Phang's avatar
checkin  
Jason Phang committed
159
160
        return ""

Jason Phang's avatar
Jason Phang committed
161
    def fewshot_context(self, doc, num_fewshot, provide_description):
Jason Phang's avatar
Jason Phang committed
162
        raw_description = self.fewshot_description()
Jason Phang's avatar
Jason Phang committed
163
        description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
Leo Gao's avatar
Update  
Leo Gao committed
164
        
165
166
167
168
169
170
        if num_fewshot == 0:
            labeled_examples = ""
        else:
            labeled_examples = "\n\n".join(
                [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in self.fewshot_examples(k=num_fewshot)]
            ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
171
172

        example = self.doc_to_text(doc).strip()
Leo Gao's avatar
Leo Gao committed
173
174
175
176
177
178
        return description + labeled_examples + example


def mean(arr):
    return sum(arr) / len(arr)

Jason Phang's avatar
Jason Phang committed
179

Jonathan Tow's avatar
Jonathan Tow committed
180
181
182
def median(arr):
    return arr[len(arr) // 2]

Jason Phang's avatar
Jason Phang committed
183

Jonathan Tow's avatar
Jonathan Tow committed
184
185
186
187
188
189
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)

Jason Phang's avatar
Jason Phang committed
190

thefazzer's avatar
thefazzer committed
191
192
193
194
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
Jonathan Tow's avatar
Jonathan Tow committed
195
    fscore = sklearn.metrics.f1_score(golds, preds)
thefazzer's avatar
thefazzer committed
196
197
    return max(fscore)

Jason Phang's avatar
Jason Phang committed
198

thefazzer's avatar
thefazzer committed
199
200
201
202
203
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]
Jason Phang's avatar
Jason Phang committed
204
205

    for doc, pred in zip(docs, preds):
thefazzer's avatar
thefazzer committed
206
207
208
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []
209
210
211

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)
thefazzer's avatar
thefazzer committed
212
213
214
215
            
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Jason Phang's avatar
Jason Phang committed
216
217
218
219
220
221
222
223
224
225

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


226
227
228
229
req_ret_lens = {
    'loglikelihood': 2
}

Jason Phang's avatar
Jason Phang committed
230

231
232
233
234
class Request:
    def __init__(self, type, args, index=None):
        if type not in req_ret_lens.keys():
            raise NotImplementedError('The request type {} is not implemented!'.format(type))
Leo Gao's avatar
Leo Gao committed
235

236
237
238
239
240
241
242
243
244
245
246
        self.type = type
        self.args = args
        self.index = index
    
    def __iter__(self):
        i = 0
        for i in range(req_ret_lens[self.type]):
            yield Request(self.type, self.args, i)
    
    def __getitem__(self, i):
        return Request(self.type, self.args, i)
Leo Gao's avatar
Leo Gao committed
247

Jason Phang's avatar
Jason Phang committed
248

Leo Gao's avatar
Leo Gao committed
249
250
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
251
252
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
253
254
255
256
        return fn


rf = RequestFactory()